

EQUAÇÃO DA RETA

Resolução

Equação da reta \overrightarrow{AB} suporte do segmento \overline{AB} .

$$\begin{vmatrix} x & y & 1 \\ 2 & 3 & 1 \\ 5 & 1 & 1 \end{vmatrix} = 0$$

Equação da reta \overrightarrow{AC} suporte do segmento \overline{AC} .

$$\begin{vmatrix} x & y & 1 \\ 2 & 3 & 1 \\ 4 & 4 & 1 \end{vmatrix} = 0$$

Equação da reta \overrightarrow{BC} suporte do segmento \overline{BC} .

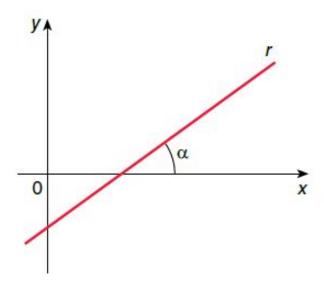
$$\begin{vmatrix} x & y & 1 \\ 5 & 1 & 1 \\ 4 & 4 & 1 \end{vmatrix} = 0$$

Logo, as equações das retas suportes são:

$$2x + 3y - 13 = 0$$
, $-x + 2y - 4 = 0$ e $-3x - y + 16 = 0$

Inclinação e coeficiente angular de uma reta

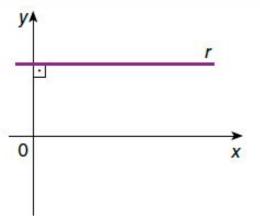
A medida α do ângulo formado pela reta r e o eixo x é chamada de inclinação da reta e é medida a partir do eixo x no sentido anti-horário (0° $\leq \alpha < 180$ ° ou 0 $\leq \alpha < \pi$). Observe a figura.



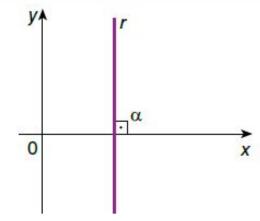
Chamamos de coeficiente angular ou declividade de uma reta não perpendicular ao eixo x o número real m expresso pela tangente trigonométrica de sua inclinação, ou seja:

$$m = tg \alpha$$

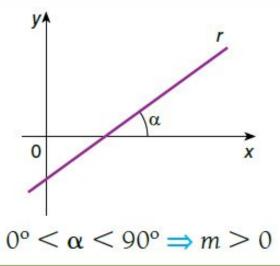
Observe as possibilidades para o ângulo α .

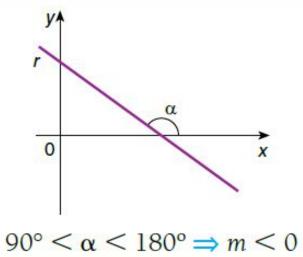


$$\alpha = 0^{\circ} \Rightarrow \text{tg } 0^{\circ} \Rightarrow m = 0$$



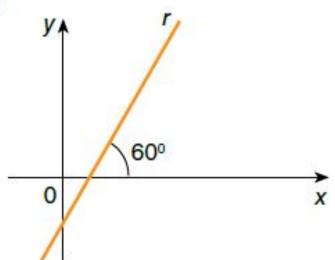
$$\alpha = 90^{\circ} \Rightarrow \text{tg } 90^{\circ}$$
, não está definida.





Exemplos:

Determinar o coeficiente angular das retas ilustradas a seguir:



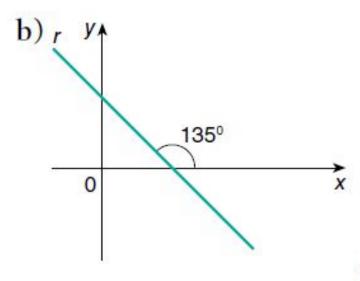
O valor de m é determinado pela tg α .

$$\alpha = 60^{\circ} \Rightarrow m = \text{tg } 60^{\circ} \Rightarrow m = \sqrt{3}$$

Portanto, o coeficiente angular é $\sqrt{3}$.

Recorde

	cosseno ulos no		gente
X	30°	45°	60°
sen x	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cos x	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2
tg x	$\frac{\sqrt{3}}{3}$	1	√3



O valor de m é dado pela tg α .

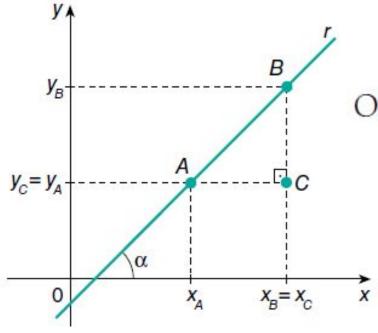
$$\alpha = 135^{\circ} \Rightarrow m = \text{tg } 135^{\circ} = -\text{tg } 45^{\circ} \Rightarrow m = -1$$

Portanto, o coeficiente angular é - 1.

Determinação do coeficiente angular

Considere dois pontos distintos $A(x_A, y_A)$ e $B(x_B, y_B)$ pertencentes a uma reta r não paralela ao eixo y e que forma com o eixo x um ângulo α .

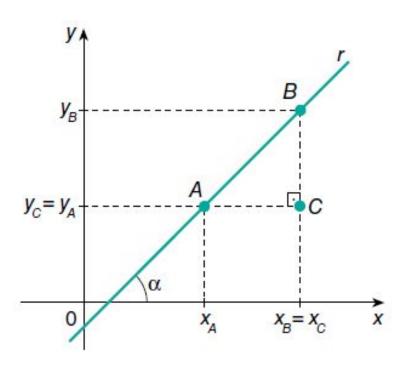
Para $0^{\circ} \le \alpha < 90^{\circ}$, temos:



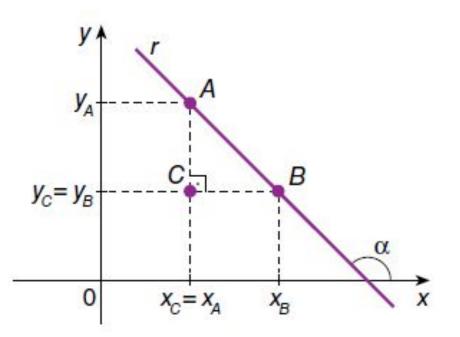
O triângulo ABC é retângulo em C. Logo:

$$m = \operatorname{tg} \alpha = \frac{d_{BC}}{d_{CA}} = \frac{y_B - y_A}{x_B - x_A}$$

Portanto, o coeficiente angular m é dado por:



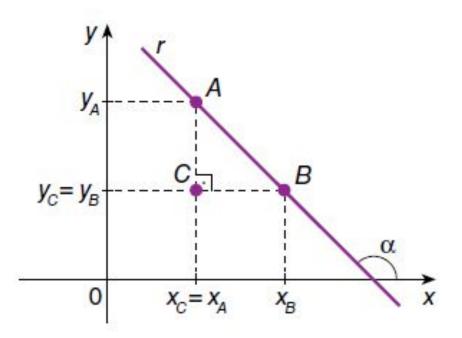
$$m = \frac{y_B - y_A}{x_B - x_A}$$



O triângulo ABC é retângulo em C. Logo:

$$m = \operatorname{tg} \alpha = -\operatorname{tg} (180^{\circ} - \alpha) = -\frac{d_{AC}}{d_{BC}} = -\frac{(y_A - y_B)}{(x_B - x_A)} = \frac{y_B - y_A}{x_B - x_A}$$

Para $90^{\circ} < \alpha < 180^{\circ}$, temos:



Portanto, o coeficiente angular m é dado por:

$$m = \frac{y_B - y_A}{x_B - x_A}$$

Exemplos:

a) Determine o coeficiente angular da reta que passa pelos pontos A(3, 2) e B(5, 7).

$$m = \frac{y_B - y_A}{x_B - x_A}$$

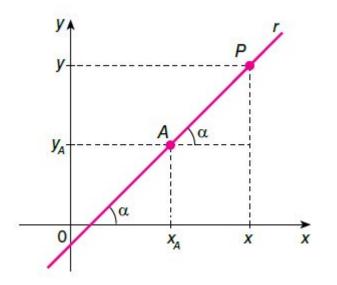
b) Dados os pontos A(k, 2) e B(2, 5) de uma reta, e seu coeficiente angular m = 1, determinar o valor de k.

$$m = \frac{y_B - y_A}{x_B - x_A}$$

Equação da reta de coeficiente angular m e que passa por um ponto $A(x_A, y_A)$

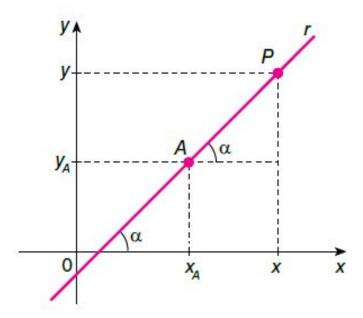
Como já estudamos, podemos determinar a equação da reta conhecidas as coordenadas de dois de seus pontos. Agora vamos determinar a equação de uma reta r que passa pelo ponto $A(x_A, y_A)$ e tem coeficiente angular m.

Considere o ponto P(x, y) na reta r, sendo $P \neq A$ e $m = \operatorname{tg} \alpha$.



Como $m = \operatorname{tg} \alpha$, então:

$$m = \frac{y - y_A}{x - x_A}$$

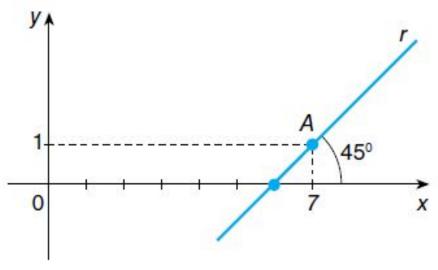


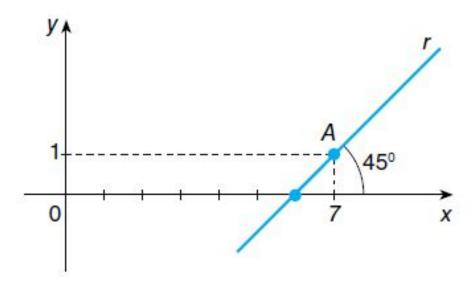
Portanto, a equação de uma reta que passa por $A(x_A, y_A)$ e tem coeficiente angular m é:

$$y - y_A = m(x - x_A)$$

EXERCÍCIOS RESOLVIDOS

R4 Na figura a seguir obter a equação geral da reta r que passa pelo ponto A e tem inclinação 45°.





Resolução

Para determinar a equação geral da reta r, é preciso encontrar o coeficiente angular m.

$$m = \operatorname{tg} \alpha \Rightarrow m = \operatorname{tg} 45^{\circ} \Rightarrow m = 1$$

A reta procurada tem coeficiente angular m=1 e passa pelo ponto A(7, 1). Assim:

$$y - y_A = m(x - x_A) \Rightarrow y - 1 = 1 \cdot (x - 7) \Rightarrow y - 1 = x - 7$$

Portanto, x - y - 6 = 0 é a equação geral da reta r.

OUTRA FORMA DE PENSAR

