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● Large scale astrophysical events cause distortions in 
spacetime known as gravitational waves

● Tiny amplitude of these distortions makes them difficult to 
detect

● LIGO - pair of enormous interferometers that use destructively 
interfering lasers to measure perturbations in spacetime

Gravitational Waves and LIGO
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● Measurement of distortion typically given by unitless 
quantity “strain”, related to relative change in 
displacement of objects caught in the wave

● Inferred from intensity of photons detected as GWs 
distort laser paths and bring them in-phase



Noise, MMA, and FastML
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● Environmental noise can degrade the perfect 
destructive interference of the lasers

● Leads to spurious photon detection, leads to noisy 
strain measurements

● Makes it difficult to pick out signals with amplitude less 
than noise, limits detection range

● Auxiliary sensors measure noise for removal

Meszaros et. al. https://arxiv.org/pdf/1906.10212.pdf

● Multi-messenger astrophysics offers 
promising insights by comparing different 
cosmic messengers from same phenomena

● LIGO + VIRGO critical for detecting and 
locating events to alert other observers

● Noise subtraction and downstream 
algorithms need to work in real-time to 
capture as much data as possible



Low Frequency Noise

● Unmodelled noise sources below 100 Hz

● Noise is coupled with auxiliary channel 
measurements, astrophysical signal isn’t

● Use auxiliary channels to regress to observed 
strain noise

● Previously proposed techniques e.g. Wiener 
filter have limited expressivity and/or can’t be 
run in real-time
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Deep Learning for Noise Regression
● Neural network can learn complicated nonlinear 

interactions between auxiliary or “witness” channels
● Fully convolutional network maps from witness 

measurements to noise estimate
● Regress noise estimates to strain measurements h(t) 

since signal is independent
● In practice, wide disparities in contributions of various 

noise sources. Normalize MSE in frequency space by 
ASD of h(t) to compensate
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Ormiston et al. (https://arxiv.org/abs/2005.06534)



Validation

● Consistency with existing 
explicitly modelled noise 
removal mechanisms

● No corruption of 
astrophysical 
signal
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Inference

● Resample and center witness data
● Use trained model to estimate noise
● Uncenter and bandpass filter
● Subtract from strain data

● Implement steps as asynchronous 
processes to maximize throughput

● Implement model inference on 
dedicated inference server using 
accelerated hardware/software

7



Inference-as-a-Service
● Portable

● Framework and 
architecture agnostic

● Critical for applications 
like DeepClean that 
need frequent retraining

● Co-locate downstream models for 
better resource allocation/autoscaling

● Manage and accelerate end-to-end 
latency of DeepClean + downstream 
algorithms to meet requirements 8



Inference-as-a-Service - DeepClean challenges

● Frame width dictated at 
train time
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Inference-as-a-Service - DeepClean challenges

● Stride between subsequent frames is an 
inference time parameter that affects 
estimation quality and arrival rate to inference 
pipeline

● If pipeline throughput can’t meet arrival rate, 
frames pile up and queue latency explodes

● Batching subsequent frames linearly 
reduces arrival rate

● Introduces unavoidable latency
● Makes streaming picture nontrivial: send 

duplicate data or build custom backend 
to batch on server side

● High throughput ML inference critical to 
mitigating these issues

● Current pipeline running with 2 copies of model, 
frame stride of 2 ms, batch size of 8, achieving 
throughput of ~450 frames / s

● Working on custom backend for streaming as well 
as tools to explore cost landscape
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Summary

● DeepClean low-frequency noise estimation can increase our capacity to detect and 
analyze astrophysical events

● Inference-as-a-service deployment represents a powerful model for accelerating the pace 
at which new architectures and applications can be adopted

● Further optimization and tools for exploring the relevant parameters will allow each use 
case to fit their own latency/throughput/cost constraints
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Thank You
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