## Today's Materials

00

# pencil notebook glue

### Combining Like Terms (part 3)

#### Lesson 22

| CCSS Standards: Building on      | • 6.EE.A.4 |
|----------------------------------|------------|
| CCSS Standards: Addressing       | • 7.EE.A.1 |
| CCSS Standards: Building towards | • 7.EE.A.1 |



2019 Open Up Resources | Download for free at openupresources.org.

Google Slides template from SlidesCarnival at https://www.slidescarnival.com.

## Let's see how we can combine terms in an expression to write it with less terms!

### Today's Goals

When I look at an expression, I can notice if some parts have <u>common factors</u> and make the expression shorter by combining those parts.

Given an expression, I can use various strategies to write an <u>equivalent expression</u>.

## Are They Equal? Warm Up

## Select all expressions that are equal to 8 - 12 - (6 + 4). a. 8 - 6 - 12 + 4 **b.** 8 - 12 - 6 - 4 **c.** 8 - 12 + (6 + 4)d. 8 - 12 - 6 + 4 e. 8 - 4 - 12 - 6

## X's and Y's

Activity 1Taking Turns



For each expression in column A... > one partner finds an equivalent expression in column B and <u>explain</u> why they are equivalent  $\succ$  the other partner <u>listens</u> for if they agree or disagree  $\succ$  If the partners don't agree, they should discuss until they come to an agreement.

Match each expression in column A with an equivalent expression from column B. Be prepared to explain your reasoning.



## Which terms does the subtraction sign apply to in each expression? How do you know?

#### Were there any expressions from column A that you wrote with fewer terms but were unable to find a match for in column B?

#### If yes, why do you think this happened?

## What were some ways you

## handled subtraction with

## parentheses?

## What were some ways you

## handled subtraction

## without parentheses?

## **Describe any difficulties**

## you experienced and

## how you resolved them.

## Seeing Structure and Factoring

Activity 2Think Pair Share



## Calculate the expression on the next slide as quickly as you can... ready?

## 18 - 45 + 27

#### What was your strategy in solving?

#### 18 - 45 + 27

#### I noticed...

## 2 • 9 - 5 • 9 - 3 • 9 = (2 - 5 + 3) • 9 = (0) • 9

Noticing **common factors** in expressions can help us write them with fewer terms or more simply.

#### Begin with Quiet Work Time. (5 min.)

## Share your expressions with your partner.







## $3\left(\frac{5}{2}x + 6\frac{1}{2}\right) + 4\left(\frac{5}{2}x + 6\frac{1}{2}\right) - 5\left(\frac{5}{2}x + 6\frac{1}{2}\right)$

### Today's Goals

When I look at an expression, I can notice if some parts have <u>common factors</u> and make the expression shorter by combining those parts.

Given an expression, I can use various strategies to write an <u>equivalent expression</u>.

## Let's reflect on Unit 6...

Describe something that you found confusing at first that you now understand well. Think of a story problem that you would not have been able to solve before this unit that you can solve now. Put a star by a notebook example or write about it. What is a tool or strategy that you learned that was particularly useful?

Describe a common mistake that people make when using the ideas we studied in this unit and how they can avoid that mistake.

□ Which is your favorite, and why?

- $\rightarrow$  the distributive property
- rewriting subtraction as adding the opposite
- $\rightarrow$  the commutative property

## R's and T's

Cool Down