1 of 3

EXERCISE 8.4

Q.4) Choose the correct option. Justify your choice.

(i) 9 sec2 A – 9 tan2 A =

Justification:

9 sec2A – 9 tan2A

=

9

(sec2A

tan2A)

=

9

(1)

=

9

sec2θ – tan2θ = 1

9 sec2A – 9 tan2A

Hence, option (B) is correct.

[Q sec2θ tan2θ = 1]

(A) 1 (B) 9 (C) 8 (D) 0

2 of 3

EXERCISE 8.4

Q.4) Choose the correct option. Justify your choice.

=

1 + tan2 A

1 + cot2 A

(iv)

Justification:

1 + tan2A

1 + cot2A

=

sec2A

cosec2A

=

1

cos2A

÷

1

sin2A

=

1

cos2A

1

sin2A

×

=

sin2 A

cos2A

tan2 A

=

1 + tan2θ = sec2θ

1 + cot2θ = cosec2θ

 

 

 

1 + tan2 A

1 + cot2 A

Hence, option (D) is correct.

(A) sec2 A (B) – 1 (C) cot2A (D) tan2A

3 of 3

EXERCISE 8.4

Q.4) Choose the correct option. Justify your choice.

(iii) (sec A + tan A) (1 – sin A) =

Justification:

(sec A + tan A)

(1 – sin A)

=

1

cos A

+

cos A

sin A

(1 – sin A)

=

(1

+

sin A)

cos A

(1 – sin A)

=

sin2 A

cos A

=

cos A

=

cos A

=

cos A

1

cos2A

 

 

1 – sin2θ = cos2θ

(sec A + tan A) (1 – sin A)

Hence, option (D) is correct.

[Q cos2θ = 1 – sin2θ]

(A) sec A (B) sin A (C) cosec A (D) cos A