
Rescue Simulation
Coordinates, Compass, and

Heading

Cartesian Coordinates

A coordinate system that specifies each point
uniquely by a pair of numerical coordinates,
which are the distances to the point from two fixed
perpendicular oriented lines (x & y axes),
measured in the same unit of length.

In the example shown, we specify a point 6 units
along the x-axis. That’s x=6.

And 4 units along the y-axis. That’s y = 4.

We represent this point as (x, y), or (6, 4)

https://en.wikipedia.org/wiki/Coordinate_system
https://en.wikipedia.org/wiki/Point_(geometry)
https://en.wikipedia.org/wiki/Number
https://en.wikipedia.org/wiki/Perpendicular
https://en.wikipedia.org/wiki/Unit_length

CoSpace Coordinates - U12/FirstSteps
In U12 sub-leagues of CoSpace Rescue
Simulation, World 2 maps are subdivided into
nine (9) districts overlaying the map.

Each district has a corresponding (x, y)
coordinate. For instance, (0,0) corresponds to
the bottom left corner, while (2,2) corresponds
to the top right corner.

You can also say x = 0 signifies the leftmost
districts, while x = 2 signifies the rightmost, and
x = 1 the districts in the “middle column”.
And so on.

What are the (x,y) coordinates for the blue robot above?

Treat Boundaries as Walls

If you wish your robot to stay in its
current District, then you should treat
changes to its X or Y position as if you’ve
hit a wall and need to bounce back.

Say you are in District 0,0 (think State):

● Condition: x = 1or y = 1
● Action: Turn back

Treat Boundaries as Walls - Sample Code

Enter 0,0 State: If @ (0,0) AND Cur State is 0 (undef) Set State = 1
(means I want to stay in 0,0)

Treat Boundaries as Walls - Sample Code

Stay in 0,0 State:

As long as State = 1

Once you’ve created a state, you can put all the special statements
associated with that state as sub-statements.

One for going too far up/north, one for going to far right/east, and
one for Fwd, as the algorithm will SKIP any other statements under
this state segment.

For example, Too Far Up means Y > 0:

In that case, you want to turn robot back, e.g:

General Use Cases of Compass Heading

In Maps like this one, it’s possible
to use a simple “Move Towards
Compass Heading” tactic to get to
the collection boxes when fully
loaded.

So, if you set your heading to
North-West or South-East,
eventually you would get to the
corners with collection boxes.
(Hint: watch your wall-avoidance
behavior for proper integration)

General Use Cases of Compass Heading

Or you may wish to drive to 1,1
(middle quadrant) and stay there
to collect 2 black and 2 cyan
objects in this map.

And then move down to one of
the bottom corners, (0,0) or (2, 0)
to collect some red objects…

In these cases you can use a state
machine to control the robot’s
heading under varied conditions.

Driving Towards a Coordinate

Manhattan Distance - Simple Algorithm

● if Ycurrent < Yheading : head
North

● Else If Xcurrent < Xheading : head
West

● Else if Xcurrent > Xheading : head East

● Else : head South

First, let’s figure out how to head towards a
compass heading...

Move Towards Compass Heading

We will start with the last step and
come up with a way to move towards
a particular Compass Heading,
because it has general use cases.

The figure here shows the internal
compass of the CoSpace world.

0 (and 360) - North
90 - West
180 - South
270 - East

Move Towards Compass Heading

Scenarios:

Move Towards Compass Heading

Scenarios:

Move Towards Compass Heading - Example
Let’s start with creating a State
to head West (heading=90).

For testing purposes, we will use
the State variable as our
heading, and we will just set our
state in the first 1sec.

After the first second, State = 90
and unless the robot is
depositing or picking up, it will
try to go West!

Move Towards Compass Heading - Example
Let’s now create the State
segment for moving West
(heading=90). Any
sub-statements here will all be
part of this special state.

State segment headings just
need a condition, and no action.

Imagine a nested If statement
inside; the action will be
determined by sub-statements.

Move Towards Compass Heading - Example
Re-analyze the polar geometry.
For instance, if robot is currently
pointing towards N/NW -
between 0 and ~90 - it needs to
turn left.

Let’s give it a ~20 degree leeway,
so between 80-100 we will call
that “West”.

Move Towards Compass Heading - Example
And, if robot is currently
pointing towards SW/S and all
the way East - between ~90 and
180- it should turn right.

How about when it points
between 180 and 270?
And 271 to 360?
(Hint: see extra “Turn Left” statement to
deal with that last one…)

Move Towards Compass Heading - Example
If the robot is heading in the
right direction, in this example
80 to 100, then just go FWD.

Note that once the code deviates
into a State’s sub-statements it
won’t go back to the main
decision tree. Any states that are
below (like Fwd) would need to
be considered in the State’s
segment as well.

Hence, the extra Fwd statement.

Driving Towards a Coordinate

Putting It All Together

In order to go to a particular quadrant using
above heading state example, you’d need to
setup 4 states, and 4 conditions that guide
which heading to follow -

● If Xcurrent < Xheading : head West
State

● Else if Xheading < Xcurrent : head East State
● Else if Ycurrent < Yheading : head North

State
● Else : head South State

vector

Move Towards Heading - Intermediate
Decision Table:

When
should the
robot just
drive
straight, if
at all?

Move Towards Heading - Intermediate
One general algorithm for
heading towards a
compass heading can be
done in Advanced Action,
as shown.

You can also pick an error
tolerance and add a FWD
state for low errors…

The Advanced Condition is
simply: Heading != -1
(Heading is NOT -1)

The End?

For FirstSteps and
Intermediate (Under 12)
CoSpace sub-leagues,
this is a good place to
stop basic training and
start practicing with
different maps,
scenarios, and strategic
algorithms.

Further slides are
mostly for Advanced.

