Rescue Simulation

— Coordinates, Compass, and S
Heading

- A POSTERIORI e

i \{" Play - Experience - Learn ’E/ -

Cartesian Coordinates

A coordinate system that specifies each point
uniquely by a pair of numerical coordinates,
which are the distances to the point from two fixed
perpendicular oriented lines (x & y axes),
measured in the same unit of length.

In the example shown, we specify a point 6 units
along the x-axis. That’s x=6.

And 4 units along the y-axis. That'sy = 4.

We represent this point as (x, y), or (6, 4)

r

et - B - L B - - T B v R =]
L N n . I It 1 N n
T T y T ' T T T

' 4

(6{4)

.....

A POSTERI

Play - Experience - Le

—t> T
4 1 23 4 56 7 8 9

ORI
Learn

https://en.wikipedia.org/wiki/Coordinate_system
https://en.wikipedia.org/wiki/Point_(geometry)
https://en.wikipedia.org/wiki/Number
https://en.wikipedia.org/wiki/Perpendicular
https://en.wikipedia.org/wiki/Unit_length

CoSpace Coordinates - U12/FirstSteps A posTERIOn

In U12 sub-leagues of CoSpace Rescue S - oy

. sitionY=, ositionY= sitiony=2 o
Simulation, World 2 maps are subdivided into o " e
nine (9) districts overlaying the map. 4. Q' e
Each district has a corresponding (x, y) : e T R T S

coordinate. For instance, (0,0) corresponds to
the bottom left corner, while (2,2) corresponds

to the top right corner. T omtonco 7 Position
- Posit| gnY=0, Positior¥
You can also say x = 0 signifies the leftmost ;' ; *

districts, while x = 2 signifies the rightmost, and
x = 1 the districts in the “middle column”.
And so on.

What are the (x,y) coordinates for the blue robot above?

Treat Boundaries as Walls A POSTERIORS

PositionX=1 PosjtionX=2

If you wish your robot to stay in its PoskionX=0 PositionX-1 Poslonk2
current District, then you should treat
changes to its X or Y position as if you've
hit a wall and need to bounce back.

Say you are in District 0,0 (think State):

e Condition:x=1ory="1
e Action: Turn back

N (e

T

Treat Boundaries as Walls - Sample Code s posreRIon

Enter 0,0 State:
HICKUD Va B
® Pickup Cyan Right
@ Pickup Black Left
@ Pickup Black Right
® Avoid Wall

|
9 0,0

= @ StayIn 0,0
® Too Far Up
® Too Far Right
® Fwd

® Fwd

If @ (0,0) AND Cur State is 0 (undef)

50 > B rono)

&, Position
X D (PositionX)
Y (PositionY)

@ Compass (Compass)
® Time 0 1000 | (Time)

() states (MyState)

loadedobjjo El |6 Bl (Loadedobjects)

Set State =1
(means | want to stay in 0,0)

Key Action[fors 3
Duration [1(0.05s) [§§ (ouration)

Set State (MyState)

Postont=0 Postionk=L Posiont=2
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Fostont=0___ Postont=L Postont=2

N

. ST
Treat Boundaries as Walls - Sample Code s posreRIon

Once you've created a state, you can put all the special statements

Stay in 0,0 State: associated with that state as sub-statements.
® Avoid Wall . . _
@ Set State 0,0 One for going too far up/north, one for going to far right/east, and
= ® StayIn 0,0 one for Fwd, as the algorithm will SKIP any other statements under
® Too Far Up this state segment.
o T E b &, Position
oo Far Rig Xjo E[2 B osionx

® Fvd For example, Too Far Up means Y > O: vy B Pt

® rwd

In that case, you want to turn robot back, e.g:

As long as State = 1 Wheel Speed

= mq nnnnn Left (WheelLeft)
| A Right (WheelRight)

Positionk1 9
posfiv=0 Postont=0 Postiontsd)

e

General Use Cases of Compass Heading A posTERIOn

LLO
RI b

In Maps like this one, it's possible
to use a simple “Move Towards
Compass Heading" tactic to get to
the collection boxes when fully
loaded.

So, if you set your heading to
North-West or South-East,
eventually you would get to the
corners with collection boxes.
(Hint: watch your wall-avoidance
behavior for proper integration)

e

General Use Cases of Compass Heading A posTERIOn

T
th
RI b

Or you may wish to drive to 1,1
(middle quadrant) and stay there
to collect 2 black and 2 cyan
objects in this map.

And then move down to one of
the bottom corners, (0,0) or (2, 0)
to collect some red objects...

In these cases you can use a state
machine to control the robot's
heading under varied conditions.

Driving Towards a Coordinate

Manhattan Distance - Simple Algorithm

¢ If Ycurrent< Yheading : head
North

¢ EIse If x(:urrent< Xheading : head
West

o Elseif X, 1ent™ Xheadmg : head East

e Else . head South

/

A POSTERI

Play - Experience

0
L

- c]_T
RI b

e

Move Towards Compass Heading A posTERIOn

T
th
RI b

We will start with the last step and
come up with a way to move towards
a particular Compass Heading,
because it has general use cases.

The figure here shows the internal
compass of the CoSpace world.

0 (and 360) - North
90 - West

180 - South

270 - East

Move Towards Compass Heading ﬁk

Scenarios:
o —
- /\ Compass = 0 . Heading=90 ‘
Heading = 90 \/ l Compass = 180
Right

Move Towards Compass Heading ﬁk
Scenarios:

Heading = 90 Compass = 270

Move Towards Compass Heading - Example &=

Let's start with creating a State
to head West (heading=90).

For testing purposes, we will use ||

the State variable as our E?Sf’n°f§oeposn
Turn to Deposit

heading, and we will just set our e
. . ® Picku an Le

state in the first 1sec. —Hid e

® Pickup Black Left

@ Pickup Black Right

After the first second, State = 90 @ SeiGawes
and unless the robot is e

® Turn Left

depositing or picking up, it will ® o

try to go West! I ' |

: Conditions :: === Acton =
(Min) (Max)

-))) Ultrasonic Sensors Key Action[None |4

FrL(:;: o Bps (Bi:;;n Duration [1(0.055) & (ouration)

Right 0 &I - (US_Right) | Set State (MyState)

Colour S
¥ Colour Sensors LED Status [0 |id (teD.1)

Jom w8

CSLeft G) Wheel Speed

CSLeft_B) Left |0 ! (WheelLeft)

Left

CSRight_G)
CSRight_B)

Right

(
(
(
(CSRight R) Right 0 B (wheelright)
(
(

8 Position
X PositionX)

(——S
Y [j (PositionY) Powered by
@ Compass [0 B [350 Bl (compass) G

CoSpaceRobot”
Studio

LoadedObj D B (LoadedObjects)

Move Towards Compass Heading - Example

Let's now create the State
segment for moving West
(heading=90). Any
sub-statements here will all be
part of this special state.

State segment headings just

need a condition, and no action.

Imagine a nested If statement
inside; the action will be
determined by sub-statements.

o heading-basi

® Avoid Trap

® Deposit

® Turn to Deposit
® Turn to Deposit
® Pickup Red Left
@ Pickup Red Right
® Pickup Cyan Left
® Pickup Cyan Right
® Pickup Black Left

@ Pickup Black Right

® Avoid Wall
@ Set Go West State
= # Go West (state = 90)
® Turn Left
® Turn Right
® Turn Left
® Fwd
a

ic - CoSpace Robot Al Development Panel

: Conditions ::
(Min) (Max)
#)) Ultrasonic Sensors
Front o[[255 B (s o0
Left |o ! 255 ! (US_Left)
Right 0 [& (US_Right)
¥ Colour Sensors
R0 B s B e
et @ (s
50 B o B (e
Jom = (S
Right @ o B [255 B (csright o)
5o B s B (Rony
8) Position
X B (PositionX)
Y 0o g 2 ! (PositionY)

@ Compass [0 Bl [360 Bl (compass)

0 1000 | (Time)

() states o H - (Mystath)
i deaub l = O = j

A POSTERIORI

Play - Experience - Learn

:Action ::

Key Action[Nene |
Duration [1(0.055) [(ouration)
SetState [1 [l (Mystate)
LED Status D (LED_1)

Wheel Speed

Left 0 [B Wheelter)
Right 0 B (wheelRight)

Powered by

g

CoSpaceRohot
Studio

Move Towards Compass Heading - Example

Re-analyze the polar geometry.

For instance, if robot is currently

pointing towards N/NW -
between 0 and ~90 - it needs to
turn left.

Let's give it a ~20 degree leeway,

so between 80-100 we will call
that “West".

i /\ I Compass = 0

Heading = 90 f

o heading-basic - CoSpace Robot Al Development Panel

@ Avoid Trap
® Deposit
® Turn to Deposit
® Turn to Deposit
® Pickup Red Left
@ Pickup Red Right
® Pickup Cyan Left
® Pickup Cyan Right
@ Pickup Black Left
@ Pickup Black Right
® Avoid wall
® Set Go West State
Gor ngtﬂ(sﬁtate =90)
@ Turn Left
® Turn Right
® Turn Left
® Fwd
® rFwd

.))) Ultrasonic Sensors

A POSTERIORI

Play - Experience - Learn

Conditions :: :: Action ::
(Min) (Max)
T L — -
Front 0 & (US_Front)

e - — o Duration [1(0.055) [(ouration)
Right o B (US_Right) Set State [1 [l (Mystate)
¥ Colour Sensors
o e LED Status [0 i (tep 1)
G (cSLeft_G) Wheel Speed
s H (cSLeft_B) Left 0 B (Wheelleft
R o B 255 B (csrightr) Right 30 Bl WheeRight)
Right @0 H (CSRight_G)
B B (CSRight_B)
8 Position
xo H (PositionX)
o B L B pociion

Powered by

@ Compass [0 Bl [0 Bl (compass) G
CRIE y o0 me ;

R
CoSpaceRobot

O States
Studio

-
LoadedObj 6 B (Loadedobjects) |

Move Towards Compass Heading - Example

And, if robot is currently
pointing towards SW/S and all
the way East - between ~90 and
180- it should turn right.

Heading = 90

\/ l Compass = 180

Right

How about when it points
between 180 and 2707
And 271 to 3607

(Hint: see extra “Turn Left” statement to
deal with that last one...)

® Avoid Trap
® Deposit
® Turn to Deposit
® Turn to Deposit
® Pickup Red Left
@ Pickup Red Right
® Pickup Cyan Left
® Pickup Cyan Right
® Pickup Black Left
@ Pickup Black Right
® Avoid Wall
® Set Go West State
Go West (state = 90)
® Turn Left
@ Tum Right
® Turn Left
® Fwd
® rwd

o heading-basic - CoSpace Robot Al Development Panel

Conditions
(Min) (Max)

-))) Ultrasonic Sensors

Front o [B [255 B (us_front)
Left o B [255 [(Us_tef)
Right o B [255 [(UsRight)

¥ Colour Sensors
CSLeft R)
CSLeft_G)
CSLeft_B)

~

Left

CSRight R)
CSRight_G)
CSRight_B)

Right

o R oo

8) Position

>

(PositionX)

>

o) Ingnlu
,i s ﬁﬁ@

@ Compass [100 g g (Compass)

Bl [1000 B (Mystate)
LoadedObj |0 g g (LoadedObjects)

O States

A POSTERIORI

Play - Experience - Learn

: Action :=:

Key Action[None |4
Duration [1(0.05s) 8§ (ouration)
SetState [1 Bl (Mystate)
LED Status D (LED_1)

Wheel Speed

Left (WheelLeft)
Right 0 B (wheeRRight)

Powered by

¢

R
CoSpaceRobot

Studio

Move Towards Compass Heading - Example

o heading-basic - CoSpace Robot Al Development Panel

If the robot is heading in the
right direction, in this example
80 to 100, then just go FWD.

:: Conditions ::

= (Min) (Max)
-))) Ultrasonic Sensors
| ®

@@@ Front B (US_Front)
. : R Left -_: -m: (US_Left)
Note that once the code deviates e Right [o— B [2s5 B (s o)
. ’ . ® Tumn to Deposit ¥ Colour Sensors
into a State’s sub-statements it :E-“T“’F?szsif 2 @l B
’ . e . Left @ (cSeft.6)
won't go back to the main . oo N =N
. e ® Pickup Cyan Right (CSRight R)
decision tree. Any states that are ® P Black en wght = B oo
) @ Pick}Jp Black Right A (CSRight_B)
below (like Fwd) would need to et | S e e
= ® Go West (state = 90) - >
. . 7 B s Y D (PositionY)
be considered in the State’s Bt i
segment as well. om ©Time © [0 e

® Fwd -) states o H (MyState)
LoadedObj [6 B (oadedobjects)

Hence, the extra Fwd statement.

[p

A POSTERIORI

Play - Experience - Learn

:: Action ::
Key Action[Nene i
Duration [1(0.05s) |id (buration)
Set State (MyState)
LED Status [0 &g (te0 1)

Wheel Speed

Left (WheelLeft)
Right (WheelRight)

Powered by

Driving Towards a Coordinate

Putting It All Together

In order to go to a particular quadrant using
above heading state example, you'd need to
setup 4 states, and 4 conditions that guide
which heading to follow -

® If ><current< Xheading : head West
State

e FElseif Xheaoling < Xeurent - head East State

e Elseif Y urrent < Yheaoling : head North

State

vecto® =

A POSTERI

Play - Experience - Le

ORI
Learn

Move Towards Heading - Intermediate A PosTERIOn:

Decision Table:

0
0 179 179 Left
0 181 181 Right When
0 270 270 Right should the
0 359 359 Right robot just
90 0 90 Right drive
179 0 179 Right straight, if
181 0 181 Left at all?
270 0 270 Left
359 0 359 Left

Move Towards Heading - Intermediate A EosTERons

One general algorithm for
heading towards a
compass heading can be World
done in Advanced Action, .
as shown.

You can also pick an error
tolerance and add a FWD
state for low errors...

The Advanced Condition is
simply: Heading != -1
(Heading is NOT -1)

p

World1 Statemen
@ Avoid Wall

L IMove To Headi

~ Statement Type

int error = Compass - Heading;
, Compass, Heading, error);

jif (error > 180 || (error < 0 && error > -180)) {

printf ("Left\n") ;
WheelLeft = 2;
WheelRight = 4;

printf ("Right\n") ;
WheelRight = 2;
Wheelleft = 4;

Advanced Action

° - LLc
The End? A POSTERTORT b f

For FirstSteps and
Intermediate (Under 12)
CoSpace sub-leagues,
this is a good place to
stop basic training and
start practicing with
different maps,
scenarios, and strategic
algorithms.

Further slides are
mostly for Advanced.

