
CS 3200 - Fall 2024

SQL - Part 1

Mark Fontenot, PhD
Northeastern University

1

Setting the Stage…

- Relational Algebra → query language for set of relations
based on Relational Data Model

- The relational data model forms the foundation for
modern relational database management systems
(RDBMS) such as MySql, Postgres, Oracle DB, MS SQL
Server, etc.

- Each RDBMS provides a query language that is a “flavor”
of the Structured Query Language (SQL) standard.

SQL: Structured Query Language

● SQL is a standardized language* used for managing and
manipulating relational databases.

● SQL is mostly a declarative language → say what you
want rather than how to get it

● but … many RDBMS vendors add procedural extensions
to their SQL implementations
○ PL/SQL from Oracle
○ T-SQL from Microsoft SQL Server
○ …

3

* See the Standards Overview section of the SQL Wikipedia Article

https://en.wikipedia.org/wiki/SQL#Standardization_history

Categories of SQL Commands

● Major Categories of SQL Commands:

○ DQL (Data Query Language)

■ SELECT Statements

○ DDL (Data Definition Language)

■ CREATE, ALTER, and DROP Statements

○ DML (Data Manipulation Language)

■ INSERT, UPDATE, and DELETE Statements

○ some resources break it down even further

SQL vs. Relational Algebra

● SQL is based on multisets where RA is based on sets.
● Data is always in some order in SQL where order doesn’t

matter in RA.
● SQL has implementation-specific limits on max size of a

row, max size of a table, etc. where RA has no such limits
○ details are RDBMS-product specific

SQL vs. Relational Algebra

- Terminology Differences

Relational Algebra SQL

Relation (Relation Instance) Table

Relation Schema Table Schema

Attribute Attribute or Column

Tuple Row

Primary Key Primary Key

Foreign Key Foreign Key

7

N
or

th
W

in
d

D
B

Sc
he

m
a

It’s SQL Time:
The SELECT Statement

Aside: Generic Syntax Statements

- Explanation of Generic Syntax in upcoming Slides
- <...> - Placeholder

- Indication that you should replace the placeholder (including the <>s)
with something specific

- Example: SELECT <value>; indicates that <value> should be
replaced with an actual value, as in SELECT 123;

- [...] - Optional
- Indication that the component(s) enclosed in [...] are not always

needed for a statement to be valid.
- Example: SELECT <value> [FROM <table>]; indicates either

of the following are syntactically valid:
- SELECT 123;
- SELECT 123 FROM categories;

Intro to SELECTs

● SELECT statement is the querying “powerhouse” of SQL.
○ includes ways to filter horizontally and vertically, combine tables,

aggregate by groups and more!

● The (almost) simplest SELECT statement

● Retrieves all FirstName values from table Employees.
IOW - it returns the FirstName column.

10

SELECT FirstName
FROM Employees;

Intro to SELECTs

● General Form of a Simple SELECT Statement:

What this does: retrieves a table with attributes <col1>, <col2>, …
from the identified table.

Note: I will capitalize keywords in SQL statements, but not strictly
required by SQL.

11

SELECT <col1>[, <col2>, …]
FROM <table name>;

SELECT Specific
Columns

Returns a table containing the
ProductID and ProductName
columns from the Products table.

12

SELECT ProductID, ProductName
FROM Products;

UnitPrice
UnitsInStock

Retrieve All Columns

- Returns all columns and rows from the Products table
- Basically, returns the complete Products table

- * is a wildcard character… in this case, it means “all columns”

13

SELECT *
FROM Products;

UnitPrice
UnitsInStock

Renaming/Aliasing
Columns

14

SELECT ProductID AS p_id,
 ProductName AS p_name
FROM Products;

SELECT <column> AS <newName>, …
FROM <table name>;G

en
er

al
Fo

rm
E

xa
m

pl
e

UnitPrice
UnitsInStock

Returns a table with
columns named p_id and
p_name.

15

SELECT ProductID AS p_id,
 ProductName AS p_name
FROM Products;

Renaming/Aliasing
Columns UnitPrice

UnitsInStock

Basic Calculations

16

SELECT OrderID, ProductID,
 (UnitPrice * Quantity) AS cost
FROM OrderDetails;

● You can perform mathematical operations between
existing attributes in the table(s).
○ Note that functions available depend on the RDBMS
○ You should alias the resulting calculated attribute with AS.

UnitPrice
UnitsInStock

Sample Query 1

For all customers, provide a list containing the customer
name, contact person’s name, their city, and postal code.

17

UnitPrice
UnitsInStock

Sample Query 2

Your boss sends you the following email… “Hi! Could you get
me a list of all products with our current stock levels? Thanks!”

18

UnitPrice
UnitsInStock

Sample Query 3

The stockroom manager needs to know the current value of each
product we currently have in stock. So, if we have 10 units of Sharp
Cheddar, what is the total value for those 10 units. Can you help
them?

19

UnitPrice
UnitsInStock

Selecting Specific Rows with
WHERE

WHERE -
● WHERE clause - includes predicates applied to every row

to determine if it is returned or not.

○ Each condition should evaluate to true or false.

21

SELECT <list of columns>
FROM <table name>
[WHERE <condition list>]G

en
er

al
Fo

rm

Why condition list?

WHERE Examples

22

SELECT ProductName, UnitPrice
FROM Products
WHERE UnitPrice < 15;

- Give the names and unit prices of products that are
less than $15.

UnitPrice
UnitsInStock

WHERE Examples

23

SELECT LastName, FirstName, HireDate
FROM Employees
WHERE HireDate >= ‘2014-01-01’;

- Give the names of any employees hired on or after
Jan 1 2014.

Notice the way we
format a date literal.

UnitPrice
UnitsInStock

Boolean Expression Operators

24

Operator Meaning Example

= Equal to InvoiceId = 2

<> Not equal to Name <> 'U2'

< or > Less/Greater than UnitPrice < 5

<= or >= Less/Greater than or equal to UnitPrice >= 0.99

LIKE Matches pattern PostalCode LIKE 'T2%'

IN Within a set City IN ('Calgary', 'Edmonton')

IS or IS NOT Compare to NULL ReportsTo IS NULL

BETWEEN Inclusive range (esp. dates) UnitPrice BETWEEN 0.99 AND 1.99

- Boolean expressions can be combined with logical AND or OR.

WHERE Examples

25

SELECT ProductName, UnitPrice
FROM Products
WHERE SupplierID = 7 AND UnitPrice < 15 ;

- Give the names and unit prices of products from supplier
with id 7 that are less than $15..

UnitPrice
UnitsInStock

WHERE Examples

26

SELECT OrderID
FROM Orders
WHERE CustomerID = 5 OR CustomerID = 12;

- Give a list of all orders placed by customer with id 5 or
customer with id 12. Only return OrderID.

UnitPrice
UnitsInStock

UnitPrice
UnitsInStock

WHERE - IN operator

27

SELECT CompanyName, ContactName
FROM Customers
WHERE Region IN (‘British Isles’, ‘Central America’);

- The boss wants a list of our customers’ company names and
contact names for all customers in the British Isles or Central
America.

● Check if attribute value is within an enumerated list of values

WHERE - LIKE Operator
- LIKE operator is used for pattern matching in strings

- <column|expression> LIKE ‘<pattern>’
- <pattern> may contain wildcard characters

- % - matches any sequence of zero or more characters in the
string

- _ (underscore) - matches any single character in the string
- Any other character in <pattern> matches itself or its

lower/upper case equivalent (i.e. case-insensitive matching)

SELECT CustomerID, CompanyName
FROM Customers
WHERE CompanyName LIKE ‘fo%’;

WHERE - Your Turn

1. Provide a list of products from the supplier with id of 12 that
cost more than $25.

29

UnitPrice
UnitsInStock

WHERE - Your Turn

2. Customer relations wants a list of all customer info for any
customer in Boston or New York (cities).

30

Adding the ORDER BY Clause

Specify the ordering of the rows in the output.

For each attribute in order by clause, ASC (default) or DESC
can be specified.

Sorting the Results

32

SELECT <list of columns>
FROM <table name>
[WHERE <condition list>]
[ORDER BY <column-order list>];G

en
er

al
 F

or
m

Specify the ordering of the rows in the output.

If <column-order list> contains more than one column, the
first column listed is the primary, and the next column is used
to break ties when the value in the primary column are equal.

Sorting the Results

33

SELECT <list of columns>
FROM <table name>
[WHERE <condition list>]
[ORDER BY <column-order list>];

G
en

er
al

 F
or

m

Output Order Example

34

SELECT ProductName, UnitPrice, UnitsOnOrder
FROM Products
WHERE UnitsOnOrder > 0
ORDER BY ProductName DESC;

- Give the names, unit prices, and number of units in stock for any
products we are currently waiting to receive. Sort the list by product
name in reverse alphabetical order.

UnitPrice
UnitsInStock
UnitsOnOrder

UnitPrice
UnitsInStock

Output Order Example

35

SELECT CompanyName, City, Country, Region
FROM Customers
ORDER BY Region, CompanyName;

- Provide a list of our customers’ company names with city, country,
and region sorted by company name within each region.

Notice…. you aren’t required to have a WHERE clause.

UnitPrice
UnitsInStock

Removing Duplicates

● Use the SELECT DISTINCT to remove duplicate rows
from the result
○ Note: Only put DISTINCT once, not for each attribute

SELECT DISTINCT Country
FROM Customers
ORDER BY Country ASC;

- Provide a list of all Countries where Northwind currently
has customers. Sort the result alphabetically.

UnitPrice
UnitsInStock

What do you think?
What do you think the potential difference between the
output of these two queries?

37

SELECT DISTINCT ShipCity, ShipCountry
FROM Orders
WHERE shipregion = 'Western Europe'
ORDER BY shipcity, shipcountry;

SELECT ShipCity, ShipCountry
from Orders
where shipregion = 'Western Europe'
order by shipcity, shipcountry;

versus

Aggregate Functions

Aggregate Functions
- Allows us to apply some function to all rows in the result set
of a query
- When used alone, resultset will be a single row
- Common aggregate functions:

- MAX
- MIN
- SUM
- AVG
- COUNT

39

SELECT MAX(UnitPrice)
FROM Products;

SELECT COUNT(*)
FROM Products;

Don’t forget… you
can alias these to
more readable
column names for
the output.

Aggregate Function Practice

What’s the average price of all products we sell?

What’s the average price of all non-discontinued products we
sell?

40

Aggregate Function Practice

What is the date of the first order we ever processed?

How many orders has “Alfreds Futterkiste” placed with us?

41

SET Operations

Union

43

SELECT City
FROM Employees
WHERE Region = 'Western Europe'
 UNION ALL
SELECT City
FROM Customers
WHERE Region = 'Western Europe';

Provide a list of all cities in Western Europe where either employees
live or customers are based.

Includes duplicates

Use UNION (without ALL)
to remove dupes

Intersection

44

SELECT City
FROM Employees
WHERE Country = 'USA'
 INTERSECT
SELECT City
FROM Customers
WHERE Country = 'USA';

Provide a list of all cities in the USA where we have BOTH
employees and customers.

There’s no ALL version
with Intersect

Except

45

SELECT City
FROM Employees
WHERE Country = 'USA'
 EXCEPT
SELECT City
FROM Customers
WHERE Country = 'USA';

Provide a list of all cities in the USA where Employees live but where
we have no customers.

