
Web Automation:
Java + TestNG +
Selenium
Webdriver

REST API with Postman

Aleksei Barabash
Software Engineer

- Java
- Web And Mobile Automation
- Backend Automated Testing

Aleksei Barabash
Software Engineer

- Ruby, Webdriver, Cucumber, API
- Java, Appium, TestNG
- Java, Espresso, Jenkins, python, AWS

● Web Automation
● Selenium WebDriver
● Locating web elements
● Assertions
● Page Object - OOP architecture

● TestNG
● Data Providers
● Reporting
● Debugging

● REST API
● Postman

Rules and Recommendations

● Mute microphone
● Use Questions/Chat section
● Keep Calm!
● Watch videos and code after class
● No homework - no result
● Google it!
● Use Skype
● Use www.teamviewer.com

http://www.teamviewer.com

Questions

First and last name

Country and city

Is working?

Company name

Skills

Is attending any courses now?

Why automation?

Why Java?

https://fossbytes.com/most-popular-programming-languages/

https://fossbytes.com/most-popular-programming-languages/

ROI for Test Automation

● Decreasing test regression time
● Reduction of repetitive testing
● Increasing efficiency of manual testers
● Faster releases
● Etc.

Risks and challenges

● Additional skills required
● Usually longer debugging
● Cost of maintenance
● Cost of infrastructure

Manual vs. Automation

● Automated tests are not a substitute for manual testing
● Testing will remain as an “exploration exercise” which require

domain knowledge and applying proper test techniques to be
able to spot anomalies in the software

● Automated test is a set of predefined test steps and comparing
the actual results with expected results - Automated checks

Automated tests Pyramid

https://martinfowler.com/bliki/TestPyramid.html

https://martinfowler.com/bliki/TestPyramid.html

TestNG

Java

WebDriver
APIs

TestNG

● Annotations
● Test grouping
● Test parallelization
● Reports
● Exception handling
● Supported by CI/CD tools

WebDriver

● Supports all major browsers
● Supports multiple programming languages
● Works on Mac, Windows, Linux
● Local, remote and cloud

Test Stateless

● Start in clean state
● TestMethod independancy
● Finish in clean state

Postman

● Complete API development and testing environment
● Manual and Automated Testing
● Documentation
● Mocking
● Monitoring
● Workspaces, collections, tools, etc.
● Easy to use
● Great interface

API
Application Programming Interface

API - “window” to the code

How the applications ‘talk’ to each other:
- System-level
- Network

Facebook, Google Maps, Yelp, Weather

Monolith vs Services

Monolith vs Services

Monolith vs Services

Monolith vs Microservices

References:

https://dzone.com/articles/breaking-down-a-monolithic-software-a-
case-for-mic

https://dzone.com/articles/breaking-down-a-monolithic-software-a-case-for-mic
https://dzone.com/articles/breaking-down-a-monolithic-software-a-case-for-mic

API - “window” to the code

- Make internal function of the app public
- Only needed functionality exposed
- The way application interacts with outside world
- Standard “language” (java app talks with python app)

Analogy

Analogy

Facebook, Google Maps, Yelp, Weather

● https://developers.facebook.com/docs/graph-api

● https://developers.google.com/apis-explorer/#p/

● https://www.yelp.com/developers

● https://openweathermap.org/api

https://developers.facebook.com/docs/graph-api
https://developers.google.com/apis-explorer/#p/
https://www.yelp.com/developers
https://openweathermap.org/api

REST API

● Representational State Transfer
● Type of architecture of networked applications
● Stateless (server not saving any data, client is)
● Client-server
● HTTP/HTTPS
● Server object are resources (CRUD)
● Supports any programming language

Application vs Resource

● Application state is server-side data
○ identify incoming client requests
○ previous interaction details
○ current context information

● Resource state is current state of a resource on server
○ No information about communication
○ API response as resource representation

Stateless = free of application state

Advantages

● REST APIs are less complex
● No synchronization logic
● Easy to cache
● Improved performance
● Less connectivity problems

REST API Methods

● GET
● POST
● PUT
● DELETE

REST API Methods

● GET
Retrieve data

● POST
Submit data

● PUT
Update data

● DELETE
Destroy data

REST API Methods

● GET
Retrieve data

● POST
Submit data

● PUT
Update data

● DELETE
Destroy data

● HEAD
(no body)

● OPTIONS
Return methods

● PATCH
Update partial

URI vs. URL

HTTP vs HTTPS

● The 'S' at the end of HTTPS stands for 'Secure'
● HTTPS using SSL (Secure Socket Layer) for sending and receiving

information
● HTTPS using SSL certificate for encryption

HTTP vs HTTPS

HTTP vs HTTPS

Endpoints

GET https://mysite.com/api/users

GET https://mysite.com/api/user/1

POST https://mysite.com/api/users

PUT https://mysite.com/api/user/1

DELETE https://mysite.com/api/user/1

https://mysite.com/api/users
https://mysite.com/api/user/1
https://mysite.com/api/users
https://mysite.com/api/user/1
https://mysite.com/api/user/1

Request

Analogy

Authentication

Example

curl -X GET https://api.github.com/users/username

https://curl.haxx.se/

https://curl.haxx.se/

Response

JSON
JavaScript Object Notation

● lightweight data-interchange format
● Human-readable
● Easy to parse

JSON
JavaScript Object Notation

● Object
● Array
● Value

JSON
JavaScript Object Notation

● Object
○ unordered set of name/value pairs

{ name : value }
● Array

○ ordered collection of values
[value]

● Value
○ String
○ Number
○ Object
○ Array

Example

JSON
JavaScript Object Notation

● Object
○ unordered set of name/value pairs

{ name : value }
● Array

○ ordered collection of values
[value]

● Value
○ Sting
○ Number
○ Object
○ Array

○ True
○ False
○ Null

JSON Syntax Rules

● Name and Value pairs: {“name” : “value”}
● Double quotes around key and value
● Use proper data type
● File type is “.json”
● Content type is “Application/json"

Analogy

Formatting and Validating

https://jsonformatter.curiousconcept.com

Create a JSON:

1. First and Last name
2. Country
3. City
4. Skills
5. Is Working? (true or false)
6. Company name

https://jsonformatter.curiousconcept.com

JSON vs. XML

JSON vs. XML

XML:

● Less human-readable

● Redundant information

● Element’s attributes

● SQL Server:
○ Less server disk space
○ Slower performance

XML formatter

https://www.freeformatter.com/xml-formatter.html

Create an XML:

1. First and Last name
2. Hobby
3. Favorite movie
4. Favorite musician/band

https://www.freeformatter.com/xml-formatter.html

Explain What Is A “Resource” In REST?

REST architecture treats every content as a resource. These
resources can be either text files, HTML pages, images, videos or
dynamic business data.

REST Server provides access to resources and REST client accesses
and modifies these resources. Here each resource is identified by
URIs/ global IDs.

What Is The Most Popular Way To Represent
A Resource In REST?

REST uses different representations to define a resource like text,
JSON, and XML.

XML and JSON are the most popular representations of resources.

Which Protocol Is Used By RESTful Web
Services?

RESTful web services make use of HTTP protocol as a medium of
communication between client and server.

What Is Messaging In RESTful Web Services?

RESTful web services make use of HTTP protocol as a medium of
communication between client and server. The client sends a
message in the form of an HTTP Request.

In response, the server transmits the HTTP Response. This technique
is called Messaging. These messages contain message data and
metadata i.e. information about the message itself.

State The Core Components Of An HTTP
Request?

1. The Verb which indicates HTTP methods such as GET, PUT, POST, DELETE.

2. URI stands for Uniform Resource Identifier (URI). It is the identifier for the
resource on the server.

3. HTTP Version which indicates HTTP version, for example-HTTP v1.1.

4. Request Header carries metadata (as key-value pairs) for the HTTP Request
message. Metadata could be a client (or browser) type, the format that client
supports, message body format, and cache settings.

5. Request Body indicates the message content or resource representation.

State The Core Components Of An HTTP
Response?

1. Status/Response Code – Indicates Server status for the resource
present in the HTTP request. For example, 404 means resource not
found and 200 means response is ok.

2. HTTP Version – Indicates HTTP version, for example-HTTP v1.1.

3. Response Header – Contains metadata for the HTTP response
message stored in the form of key-value pairs. For example, content
length, content type, response date, and server type.

4. Response Body – Indicates response message content or resource
representation.

Name The Most Commonly Used HTTP
Methods Supported By REST?

1. GET - It requests a resource at the request-URL. It should not contain a request body as it will

get discarded. Maybe it can be cached locally or on the server.

2. POST – It submits information to the service for processing; it should typically return the

modified or new resource.

3. PUT – At the request URL it updates the resource.

4. DELETE – It removes the resource at the request-URL.

5. OPTIONS -It indicates the supported techniques.

6. HEAD – It returns meta information about the request URL.

Mention some key characteristics of REST?

Some key characteristics of REST includes

REST is stateless, therefore the SERVER has no state (or session
data)

With a well-applied REST API, the server could be restarted between
two calls as every data is passed to the server

Web service mostly uses POST method to make operations, whereas
REST uses GET to access resources

