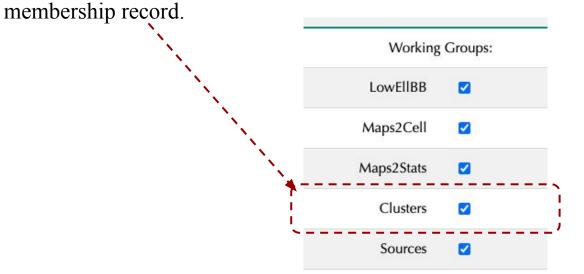


Cosmology and Astrophysics with Galaxy Clusters from CMB-S4

Session organisers: Hao-Yi (Heidi) Wu and Srinivasan Raghunathan

CMB-S4 summer collaboration meeting 12 August 2021



New CMB-S4 clusters analysis working group

Jim Bartlett (APC - U. of Paris)

- Co-coordinating along with Prof. Jim Bartlett.
- Goals: Clusters along with all possible SZ science including cross-correlations.
- Next call: Aug 25, 2021 at 9 a.m. Pacific.
- Please sign-up, if not done so already.
 - $\circ \underline{https://cmb-s4.org/} \rightarrow \underline{https://cmb-s4.org/team-page/} \rightarrow Your$

Secondary CMB anisotropies and their correlations with LSS: ISW, lensing, kSZ, moving-lens (Birkinshaw-Gull), **tSZ**.

- Synergies of Large Scale Structure Surveys with CMB-S4 (Tuesday).
 - Andrina Nicola and Emmanuel (Manu) Schaan.
- Backlighting the Baryons with CMB-S4 (Wednesday).
 - Alexie Leauthaud and Simone Ferraro.

Thermal Sunyaev-Zeldovich (SZ) effect

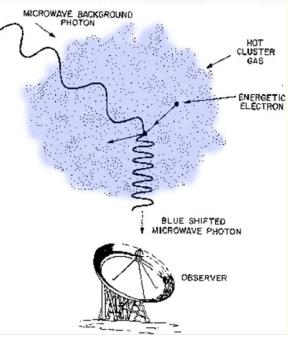
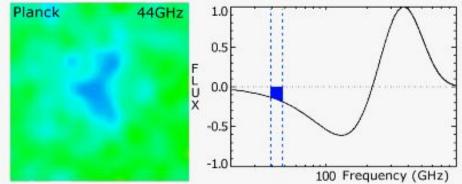
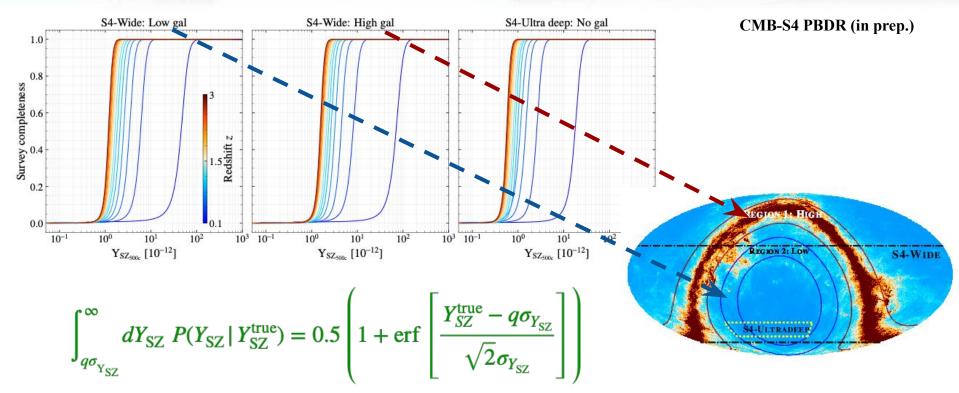



Image: L. Van Speybroeck

- Galaxy clusters contain hot gas (free electrons).
- CMB photons, that pass through clusters of galaxies, are inverse Compton scattered by free electrons in the intracluster medium (ICM).
- Used for blind detections of clusters in CMB surveys.
- SZ effect is redshift independent and hence allows us detect distant clusters.
- Cluster abundance as a fn(M,z) is also an excellent probe of structure formation with different parameter degeneracies compared to primary CMB.

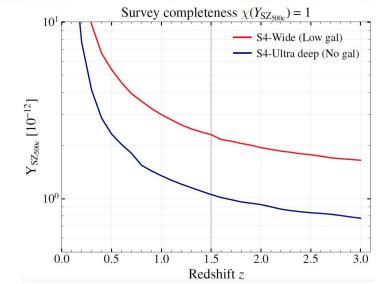
Frequency dependence of thermal SZ (Image: ESA)

CMB-S4 cluster forecasts


• CMB-S4 cluster surveys:

- 6-metre telescopes \rightarrow 1.4 arcmin beam at 145 GHz.
- \circ CMB-S4 Wide: Chilean survey: fsky = 67%.
- \circ CMB-S4 Ultra-deep: South Pole survey: fsky = 3%.
- Signal-to-noise threshold: 5σ .
- Observable:

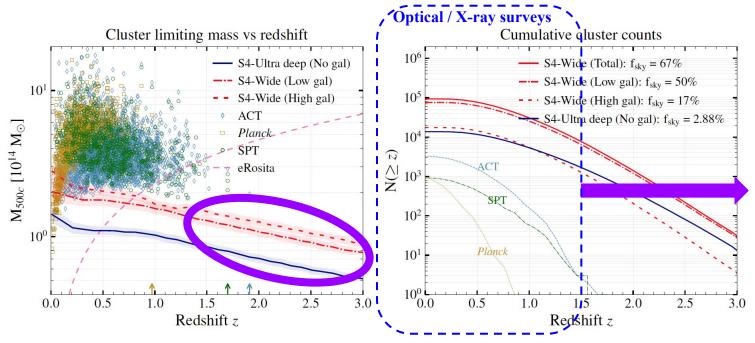
CMB-S4 shall detect (at 5 σ) all galaxy clusters with an integrated Compton $Y_{SZ} \ge XX$ at $z \ge 1.5$ over the large area survey footprint ($f_{sky} = 67\%$). Furthermore, it shall detect (at 5 sigma) all galaxy clusters with an integrated Compton $Y_{SZ} \ge YY$ at $z \ge 1.5$ over the de-lensing survey footprint ($f_{sky} = 3\%$).


CMB-S4 cluster survey completeness

Planck collaboration 2014 XX, arXiv: <u>1303.5080</u> Alonso, Louis, Bull et al. 2016, arXiv: <u>1604.01382</u>

CMB-S4 cluster survey completeness

Science requirement:


CMB-S4 shall detect (at 5 σ) all galaxy clusters with an integrated Compton $Y_{SZ} \ge 2x10^{-12} \text{ sr at } z \ge 1.5 \text{ over the large area survey footprint (} f_{sky} = \frac{65\%}{50\%}$). Furthermore, it shall detect (at 5 σ) all galaxy clusters with an integrated Compton $Y_{SZ} \ge 10^{-12} \text{ sr at } z \ge 1.5 \text{ over the de-lensing survey}$ footprint ($f_{sky} = 3\%$).

CMB-S4

CMB-S4 PBDR (in prep.)

CMB-S4 cluster sensitivity / counts

- S4-Wide: Contains clusters from low ($f_{sky} = 0.5$) + high ($f_{sky} = 0.15$) galactic emission regions. Removing high galactic emission region reduces ~20% objects.
- High-z (z>=2) clusters: S4-Wide $\rightarrow \sim 1000$ clusters; S4-Ultra deep $\rightarrow \sim 350$ clusters.

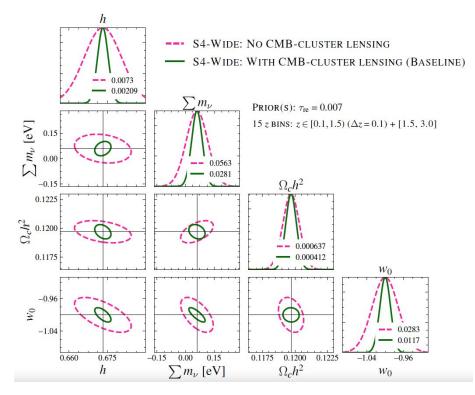
Talks in the parallel session:

CMB-S4

Vittorio Ghirardini, Tesla Jeltema, and Grant

CMB-S4 PBDR (in prep.)

CMB-S4 cluster forecasts: Expected counts



Work done with *Marcelo Alvarez, Han Aung, Nick Battaglia, Gil Holder, Daisuke Nagai, Elena Pierpaoli and Nathan Whitehorn.* Look into arXiv:2107.10250 for more details.

Cosmological constraints

CMB-S4 Wide: CMB (TT/EE/TE) with Cluster counts using CMB-cluster lensing mass calibration.

Including information from galaxy weak lensing will further strengthen the constraints and also offer an important systematic check.

Data:

To et al. 2021, arXiv: <u>2010.01138</u> DES collaboration 2020, arXiv: <u>2002.11124</u> Bocqet et al. 2019, arXiv: <u>1812.01679</u> Zubeldia & Challinor 2019, arXiv: <u>1904.07887</u>

> *Talks in the parallel session: Sebastian Bocquet and Tesla Jeltema.*

Look into arXiv:2107.10250 for more details.

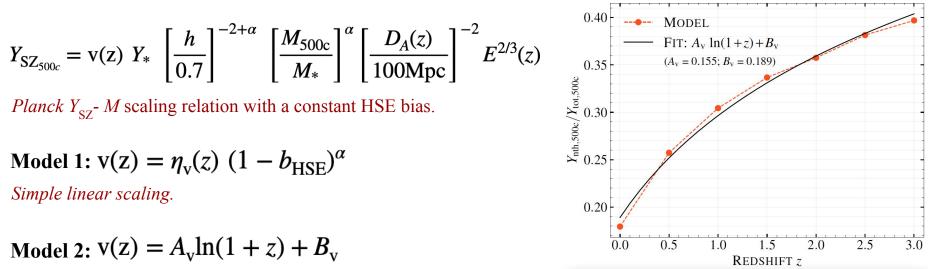
CMB-S4 Also see Louis & Alonso 2017, arXiv: <u>1609.03997</u>; Madhavacheril, Battaglia & Miyatake 2017, arXiv: <u>1708.07502</u>.

What about cluster astrophysics?

CMB-S4 STM

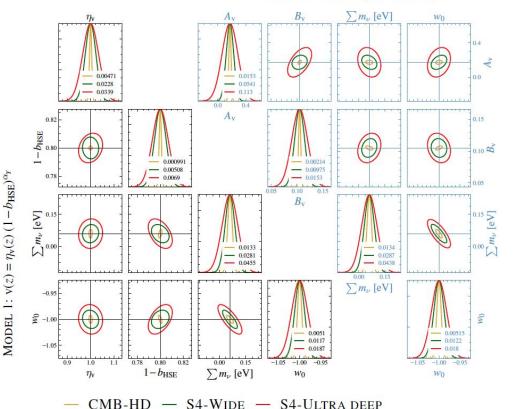
DOE & NAS SCIENCE GOALS	
(P5* Strategic Plan;	
New Worlds New Horizons 2010)	CMB-S4 SCIENCE GOAL
	Measure the emergence of galaxy clusters as we know them today. Quantify the formation and evolution of the clusters and the ICM during this crucial period in galaxy formation.
Witnessing the emergence of the	
Intracluster Medium (ICM)	

Talks in the parallel session:


Susmita Adhikari, Eric Baxter, Han Aung/Daisuke Nagai/Erwin Lau and Grant Tremblay.

Virialisation mechanism of distant clusters

What about the virialisation process of high-z clusters?


- **Observations:** Only one cluster at z~2. Mantz et al. 2014, 2018 (arXiv: <u>1401.2087</u>, <u>1703.08221</u>) find the properties of this cluster to be consistent with low-z clusters.
- CMB-S4 will make a giant leap in the field of cluster science.

Analytic model tested using simulations.

Talks in the parallel session: Han Aung/Daisuke Nagai/Erwin Lau.

Constraining astrophysics and cosmology with clusters

15 z BINS: $z \in [0.1, 1.5)$ ($\Delta z = 0.1$) + [1.5, 3.0]; PRIOR(S): $\tau_{re} = 0.007$

MODEL 2: $v(z) = A_v ln(1+z) + B_v$

- Model 1:
 - 2-4 per cent on cluster virialisation parameter.
 - Sub-percent constraint on (constant) HSE bias.
- Model 2:
 - <5 per cent on B_v and ~30 per cent on redshift evolution A_v .
- Swapping cluster virialisation model 1 to model 2 does not affect cosmological constraints significantly.

Look into arXiv:2107.10250 for more details.

Details about parallel session

- Status of eROSITA Vittorio *Ghirardini*.
- SPT/DES Cluster Cosmology Sebastian *Bocquet*.
- Understanding the mass and galaxy distribution in Clusters: A perspective from the edge of DM halos **Susmita** *Adhikari*.
- Synergy between optical, SZ, and X-ray: Lessons learned from DES Cluster Cosmology Tesla Jeltema.
 - Discussion/Break.
- Cluster science using the synergy between CMB-S4 and Lynx Grant *Tremblay*.
- Gas in the outskirts of galaxy clusters Eric Baxter.
- Baryon pasting + high-z cluster virialization models Han Aung, Erwin Lau, and Daisuke Nagai.
 - Discussion/Close.

