Southern Ocean Dynamics Under Climate Change: New Knowledge Through Physics-Guided Machine Learning
NeurIPS 2023 Workshop: Tackling Climate Change with Machine Learning
1Dept. of Computer Science/Mathematics, Harvey Mudd College, Claremont, USA
2Computational Climate & Ocean Group, Dept. of Computer Science, University of California, Davis, USA
3NOAA/OAR Geophysical Fluid Dynamics Laboratory, Princeton, USA
4ECMWF, Bonn, Germany
5IPSL/IRD, Paris, France
William Yik1,2,3, Maike Sonnewald2,3, Marianna Clare4, Redouane Lguensat5
The ocean and climate change
Image: NOAA/Atlantic Oceanographic & Meteorological Laboratory
Böning, C. W., Dispert, A., Visbeck, M., Rintoul, S. R., & Schwarzkopf, F. U. (2008). The response of the Antarctic Circumpolar Current to recent climate change. Nature Geoscience, 1(12), 864-869.
Global climate modeling
Image: Lawrence Livermore National Laboratory
O'Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., ... & Sanderson, B. M. (2016). The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), 3461-3482.
Tracking global Heating with Ocean Regimes (THOR)
Step 1: Mesoscale unsupervised clustering
McInnes, L., Healy, J., & Melville, J. (2018). Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426.
Sonnewald, M. (In review). A hierarchical ensemble manifold methodology for new knowledge on spatial data: An application to ocean physics. JAMES.
Step 2: Learning regimes from readily available fields
Step 3: Predicting regimes under climate change
THOR reveals a shift in physics where the Antarctic Circumpolar Current (ACC) meets the Pacific Antarctic Ridge (PAR).
Key contributions
Future directions and conclusion
Read our paper!