
SUAVE smart contract programming model:
 TEE-based smart contracts for block building

Explaining SUAVE to Comp. Sec.
researchers in 10 minutes

Caveats

The following explanation gets many details wrong or oversimplified. Some over
simplification is deliberate intended to dodge rabbit holes and save time.

I am mainly inhabiting a very simplified mental model where there’s nothing about
the blockchain except for uniswap v2 trades. I think this is sufficient to understand
the main phenomena.

Plenty of this is conjecture, personal interpretation of everyone else’s notion drafts,
etc.!

“Flashbots just wants to extract MEV from users.”

No. Flashbots wants to (and already does) the following:

1. Prevent front running

2. Make back running (arbitrage) benefit users rather than just searchers, without
bogging down the network.

First let’s talk about goals&policy, separate from how to do it

Secret Network is a bit like SUAVE

In TEE-based smart contracts, we already have encrypted
mempools, and therefore fair ordering.

However, the remaining arbitrage opportunity
cannot be captured by users, must be mitigated

Unsophisticated trades create mess someone must clean up

In a world with Fair Ordering only (e.g., Secret today) the following would happen:

Unsophisticated trades create arbitrage opportunities.

These are only revealed to arbitrageurs in the next block.

Users capture zero of the benefit when the arbitrage eventually occurs.

A PGA battle could break out as arbitrageurs fight over top of block position.

Unsophisticated trades create mess someone must clean up

Before trade

Pool 1 Pool 2 Pool 3

After trade

After arbitrage

User

Block finalized

Arbitrageurs

MEV-Share allows users to outsource their arbitrage

Before trade

Pool 1 Pool 2 Pool 3

After trade

User

After arbitrage

Arbitrageurs

MEV-Share: Bidding
on backrun
transaction

Block finalized

What is SUAVE, compared to what exists today?

Three things:

1. Replace trust in the operator with trust in TEEs, and/or cryptography and
threshold mpc

2. Make the operation of the service decentralized, geographically and
administratively

3. User programmable, based on smart contracts. An open, contestable,
marketplace for mechanisms.

SUAVE: unifying the MEV transaction supply chain

Bidding
contracts

Backrun
auction

Contracts

MEV-Boost
Relay

With SUAVE Market for mechanisms
based on Smart Contracts, we have
transparency, user empowerment.
Competing contracts can fulfill
different roles.

Contracts require a privacy oriented
programming model.

builders

Today’s market heavily relies on
trust in service providers

Competing relays

Builder
MEV Share

auction

searchers executors

Bundle
merging
contracts

searchers

SUAVE’s strategy was anticipated by
StrategyProof Computing from Ng, Parkes, Seltzer 03.

SUAVE’s strategy was anticipated by
StrategyProof Computing from Ng, Parkes, Seltzer 03.

SUAVE aims to fulfill this vision of
Strategy Proof Computing, in having
an open marketplace for
mechanisms… even just for these
blockspace / orderflow auctions.

Emphasis on “openness”.... SUAVE
ensures market innovation occurs in
the open, through published smart
contracts… rather than in private
arenas with deep moats.

SUAVE design principles: (heavily borrowed from Ng, Parkes, Seltzer):

1. Guide the market towards open innovation competition.

2. Open system design.

3. Decentralized implementation.

4. Programmable privacy.

SUAVE
contracts

SUAVE as an Ideal Functionality

bids, private preferences,
authorize contracts

Arbitrage, strategy,
solving

SUAVE
contracts

SUAVE
contracts

Market
design
innovators

Users,
wallets

Searchers,
solvers,
executors

define contracts

hints, leakage, side channels

Blocks to
validators

Confidential
storage

On-Chain block building in the spec

SUAVE
contracts SUAVE Chain

- Mempool of pending bids
- Committed bids
- Committed smart contracts
- Confidential storage

SUAVE as decentralized TEE-based smart contracts

bids, private preferences,
authorize contracts

TEE Kettles
- Executors have TEEs
- Able to execute off-chain
queries defined by contracts
- Local encrypted storage

SUAVE
contracts

L1
Blocks

Off-Chain block building in realization

Ecosystem of SUAVE Contracts

MEV-Share,
Bundling

Tx Br

Raw user preferences,
e.g. reserve prices,
wrapped in Bids

TEE Kettle
privacy boundary

Merging,
MEV-Boost

Searcher’s choice
of which contracts
to activate

Hints (explicit),
+ Side channels (❗)

E
xport B

lock
header

proposal

block

Tx Br

Tx

Users opt-in to authorized
Builder Contracts

Bundle merging may resolve conflicts. Building may be
limited to 1 final sequential execution?

LogFilter

Innovators in the mechanism marketplace
propose new SUAVE Contracts,

 compete for user adoption.

?

Searchers may make credible commits
through opaque builder contracts (todo?)

Br

TEE Kettles create
local simulated forks,
as specified by
SUAVE contract
applications.

Decentralized Execution through TEE Kettle network

SUAVE Chain

SUAVE
mempool

Public logs

Local Forks

Public queries, hints, any modeled leakage

L1
Blocks

Bids

The TEE Deployment Motte & Bailey

The TEE Deployment Motte & Bailey
Cloud instances (e.g., Azure, IBM, ...),
+ Convenience
+ Physical security, incentive alignment(?)

- Often opaque policies, incentive alignment(?)

Self-hosted or cloud TEEs
++ Convenience
++ Distributed resources

- - Trust model, physical access

MPC / Threshold FHE
+ Best security, must break
TEE *AND* multiple hosts
- Cost, not practical yet

SUAVE Programming Examples

function mevboost.build() {

// Pass #1: Estimate EGP of each bundle based on top-of-block sim
For each bundle in all_bundles();

st :=L1.topofblock.simulateEVM(bundle)
EGP[bundle] := st.queryEGP()

st := L1.topofblock; block := []
// Pass #2: Revisit in order by Pass#1 estimate
While blockspace remains, for each bundle by EGP:

st := st.simulateEVM(bundle)
EGP’ := st.queryEGP()
If EGP’ decreases, or bundle fails: discard
Otherwise: block.append(bundle)

exportBlock(block)
}

Modelling Flashbots Builder as SUAVE contract

Pass 1: Top of block
simulation.
(EGP: Effective Gas
Price, a measure of the
the MEV obtained)

Pass 2: In-order
simulation

function submit_bid(uint qty, uint rsv) {
// Phase #1: On-chain bidding ensures data availability
// This could also be passed as signed messages
bids[msg.sender].push(Bid(qty,rsv));

}

function process_bids() {
// Phase #2: Use bisection to determine the strike price,
// Passing the residual demand to the AMM.
bundle = settle_and_residual(self.bids, self.amm)
mevboost.submit_bundle(bundle) // Submit onward to an auction

}

Modelling WalruSuave as a SUAVE Contract

This contract allows searchers to submit a backrun. Bundles are submitted with
user defined hints about the bundle.

function submit_bundle(Bundle b, hints) public {

// Pass 1: on ingest… simulated top of block only

all_bundles[b.ID] := (b, hints)

emit (hints,hints(b)) // Leak user-configured hints

}

function match_backrun(Bundle b, Tx br, hints) {
// Pass 2: build a bundle based on this backrun
b’,hints := flatten(all_bundles[b.id], br, hints)
all_bundles[b’.ID] := b’; mevboost.send_bundle(b’)

}

Modelling MEV-Share as a SUAVE contract

We also need to modify the builder rule, to respect the MEV-share redist policy

function mevboost.build_plus_mevshare() {

// Pass #1: Estimate EGP
For each bundle in all_mevshare_bundles();

st :=L1.topofblock.simulateEVM(bundle)
EGP[bundle] := st.queryEGP()
bundle.append(Generate Kickback transaction)

// Pass #2: Revisit in order by Pass#1 estimate
...

exportBlock(block)
}

Modelling MEV-Share as a SUAVE contract

PROF as a SUAVE contract - a simulation bypass
PROF bundles can be added to a block and exported, but they are NOT allowed
to be simulated EXCEPT in the very final step of exporting a block.
In other words, this bypasses the EGP simulation step of the sorting builder.

function mevboost_plusprof.build() {
// Ordinary mevboost.build
…

// Prof blocks

While blockspace still remains, for each prof bundle:
block.append(bundle)

exportBlock(block)
}

TEE Smart contract insights

Rollups for Free using TEEs

If we are using TEEs, we might as well also incorporate their use for attestation.
We can get the same functionality as zk SNARKs, assuming the TEE functions
correctly.

So far, TEE-based smart contracts have NOT made use of this. Instead they have
preferred replication. This importantly means that if the TEE is compromised, it
does not change the integrity guarantees, i.e. printing tokens.

In the case of the SUAVE auction, what’s at stake is short lived confidentiality
anyway, so this tradeoff makes sense. This is more applicable for SUAVE than
for user-privacy in general TEE Smart Contract applications.

Interesting new programming concept for TEE contracts

Hackin’ insight: TEE-based contracts like Secret and Oasis can turn their “view”
queries into off-chain programs. The reason is that these views are smart
contract-defined, but since they run in TEE they can have private state.

It makes sense to allow them to use encryption and message authentication
codes, in order to chain off-chain views together. It’s a TEE-based rollup.

 ⛽
on-chain

 ⛽
on-chain

 ⛽
on-chain

 ⛽
on-chain

on-chain

On-chain computing:
slow, gassy

on-chain

off-chainoff-chain

off-chain off-chain

Off-chain computing:
- Makes use of contract-defined
view functions.
- View functions can access
TEE-contract MAC and encryption.
- Localmutable for local indexes

Decentralized TEE compute

https://emojipedia.org/fuel-pump/
https://emojipedia.org/fuel-pump/
https://emojipedia.org/fuel-pump/
https://emojipedia.org/fuel-pump/

contract {
// Off-chain function TEE kettles compute locally
function offchainNext(EncState) returns(EncState) view ….
// On-chain function to accept result after off-chain compute
function acceptEvidence(EncState);

}

Off-chain computing example

 ⛽
x := hash(x);
i++

 ⛽
x := hash(x);
i++

 ⛽
x := hash(x);
i++

 ⛽
x := hash(x);
i++

on-chain acceptEvidence

offchainNextoffchainNext

Decentralized TEE compute

contract {
// Mutable function iterates
function computeNext() …

}

https://emojipedia.org/fuel-pump/
https://emojipedia.org/fuel-pump/
https://emojipedia.org/fuel-pump/
https://emojipedia.org/fuel-pump/

In this ideal functionality, the use of simulateEVM explicitly generates an access
pattern trace. In fact this trace is quite rich as a starting point, and essentially
follows along with the program counter. Practically only signatures and, say, the
value of a random 32-byte field are protected. In this way the trace is a faithful
over-approximation of the actual side channels when run at full speed. It’s
explicit, so the market must price it in.

Counterintuitive: Troll thought: this is side channel accelerationism.

Next, we can aim to remove side channels for specific recognized applications,
through ORAM or by computing on an abstracted form of the calldata (see mpc
backrunning)

Side channels? Make them explicit… then mitigate them

- Mechanism design and analysis. This has been describing a platform, but not
at all making progress on the “Locally Strategy Proof” regime of compositional
mechanism analysis. Start with MEV-share+boost, which is very concrete?

Conjecture: MEV-share outperforms PROF for every participating user

- Security analysis. This has been a sketch of an ideal functionality model. Can
we instantiate it from an Ideal Functionality of TEE-based smart contracts?

- Builder contracts programming model. Haven’t finished these examples yet,
but already the precompiles design questions are interesting. Modular designs for
building rules? Off-chain programming this needs more abstraction.

- Hybrid operation: interoperate with cryptography alternatives to TEE

Open Questions

Mechanism design
guided by logic of
credible commitments

Pragmatic generalization of
MEV-Boost, MEV-Share

Distributed Execution based
on TEEs and cryptography

Block building using a smart
contracts programming model

SUAVE

Public innovation
marketplace

