SUAVE smart contract programming model:
TEE-based smart contracts for block building

Explaining SUAVE to Comp. Sec.
researchers in 10 minutes

Caveats

The following explanation gets many details wrong or oversimplified. Some over
simplification is deliberate intended to dodge rabbit holes and save time.

| am mainly inhabiting a very simplified mental model where there’s nothing about
the blockchain except for uniswap v2 trades. | think this is sufficient to understand
the main phenomena.

Plenty of this is conjecture, personal interpretation of everyone else’s notion drafts,
etc.!

First let’s talk about goals&policy, separate from how to do it

“Flashbots just wants to extract MEV from users.”
No. Flashbots wants to (and already does) the following:

1. Prevent front running

2. Make back running (arbitrage) benefit users rather than just searchers, without
bogging down the network.

Secret Network is a bit like SUAVE

| Messages

Execute Contract

@type

Sender

Contract

Label

Message

Sent Funds

Callback Code Hash

/secret.compute.vlbetal.MsgExecuteContract

secretlckyjj73t332538zmnlvuy3t5yd3vzwd7aq8w64

secretl0fnnw35xsrsngexwwpzydpsenpgkqkpk503fsr

1681578667.124639597Iptoken

WWQ/29CSnL7bAd+gDYGoff81qnrGI7HgjCOktcvgSbmNUyS
soFX5y00itQAdOxbVirGk+7iKTvFlv6qnZZjvjlgmGp23iP1VM
RWQWLgniGIWpHL5B/cLOmwrphUEWuT500rbCqieWSIUVGf
yM9QqkP/SgHR7RMrI8/ir52DIgXxfOeXA9yEPyjzV1fQbkY/8Y
B21u6p3vFiQRFoySiGIXpHSEPeDcbd6y6MArI5udcPi5VWp
ON2yh3euflR8YzAQOvgwGWCV8InM4Z7K6énrLgaxz1dAKTl

In TEE-based smart contracts, we already have encrypted

mempools, and therefore fair ordering.

However, the remaining arbitrage opportunity
cannot be captured by users, must be mitigated

% SiennaSwap

A tokens

spent

Old
posmon B tokens

gained

New
position

Quantity of A tokens in contract

completion. Furthermore, due to the utilization of the Secret Network and its Secret
Contracts, the transactional information for transactions occurring on Sienna Network
are private - eliminating the merest possibility of front-running with the purpose of

shorting the market on Sienna Network.

Unsophisticated trades create mess someone must clean up

In a world with Fair Ordering only (e.g., Secret today) the following would happen:
Unsophisticated trades create arbitrage opportunities.
These are only revealed to arbitrageurs in the next block.
Users capture zero of the benefit when the arbitrage eventually occurs.

A PGA battle could break out as arbitrageurs fight over top of block position.

Unsophisticated trades create mess someone must clean up

Pool 1 Pool 2 Pool 3 User Arbitrageurs

Before trade

After trade

Block finalized

After arbitrage

MEV-Share allows users to outsource their arbitrage

Pool 1 Pool 2 Pool 3 User Arbitrageurs
Before trade @ @ <|> Q
MEV-Share: Bidding
After trade on backrun
transaction

Block finalized

What is SUAVE, compared to what exists today?

Three things:

1. Replace trust in the operator with trust in TEEs, and/or cryptography and
threshold mpc

2. Make the operation of the service decentralized, geographically and
administratively

3. User programmable, based on smart contracts. An open, contestable,
marketplace for mechanisms.

SUAVE: unifying the MEV transaction supply chain

searchers
Today’s market heavily relies on \ Build MEV-Boost
trust in service providers - utider Relay
MEV Share
auction builders Competing relays
With SUAVE Market for mechanisms
based on Smart Contracts, we have searchers executors
transparency, user empowerment.
Competing contracts can fulfill Backrun <<~ | Bundle || _. .
different roles. e merging Bidding
contracts >
_ . _ Contracts contracts
Contracts require a privacy oriented — T

programming model.

SUAVE's strategy was anticipated by
StrategyProof Computing from Ng, Parkes, Seltzer 03.

DY, L vz

[A4 open] Systems should be open to allow for innovation and
competition in the design of new services. This principle applies to
the methods of resource allocation and arbitration, just as it ap-
plies, for example, to the design of web servers and the design
of distributed file caches. A successful open system requires a
lightweight infrastructure in which we only introduce universal and
minimal components, to enable the deployment of services without
preventing the future deployment of unanticipated applications.

[AS5 decentralized] The control structure in distributed comput-
ing systems must be decentralized, both to respect the autonomy
of the nodes that own the property rights to resources, but also for
reasons of computational scale and timeliness of information.

The SPC infrastructure must provide support for multiple users
to design and deploy competing LSP mechanisms, in a market
for mechanisms. With this, we achieve the second set of design
principles of open and decentralized systems. Our belief is that
an open marketplace will naturally lead to mechanisms with the
“right scope” and the “right complexity”. This decision repre-
sents a tradeoff between providing a large enough scope to suffi-
ciently simplify the game-theoretic decision facing a participant—
for example, bringing resources that are complementary for a large
number of users into the same scope —while maintaining a small
enough scope to build computationally reasonable resource alloca-
tion mechanisms. The degree to which market forces lead to the
emergence of mechanisms with the right scope is an important re-
search question.

SUAVE's strategy was anticipated by
StrategyProof Computing from Ng, Parkes, Seltzer 03.

SUAVE aims to fulfill this vision of
Strategy Proof Computing, in having
an open marketplace for
mechanisms... even just for these
blockspace / orderflow auctions.

Emphasis on “openness’”.... SUAVE
ensures market innovation occurs in
the open, through published smart
contracts... rather than in private
arenas with deep moats.

The SPC infrastructure must provide support for multiple users
to design and deploy competing LSP mechanisms, in a market
for mechanisms. With this, we achieve the second set of design
principles of open and decentralized systems. Our belief is that
an open marketplace will naturally lead to mechanisms with the
“right scope” and the “right complexity”. This decision repre-
sents a tradeoff between providing a large enough scope to suffi-
ciently simplify the game-theoretic decision facing a participant—
for example, bringing resources that are complementary for a large
number of users into the same scope —while maintaining a small
enough scope to build computationally reasonable resource alloca-
tion mechanisms. The degree to which market forces lead to the
emergence of mechanisms with the right scope is an important re-
search question.

SUAVE design principles: (heavily borrowed from Ng, Parkes, Seltzer):
1. Guide the market towards open innovation competition.

2. Open system design.

3. Decentralized implementation.

4. Programmable privacy.

SUAVE as an Ideal Functionality

On-Chain block building in the spec

Market _
design define contracts
innovators
SUAVE
contracts
bids, private preferences,
Users, : authorize contracts SUAVE Blocks to
wallets contracts validators
SUAVE
hints, leakage, side channels contracts
Searchers, 4
solvers, - , :
executors \l Arbitrage, strategy, _ = Confidential
solving - storage
22

SUAVE as decentralized TEE-based smart contracts

bids, private preferences,
authorize contracts

L1
ﬁ Blocks

1 -

SUAVE SUAVE Chain

contracts - Mempool of pending bids

- Committed bids

- Committed smart contracts
- Confidential storage

éi\ |
" N
TEE Kettles \/
N’

- Executors have TEEs

- Able to execute off-chain

queries defined by contracts
- Local encrypted storage

Off-Chain block building in realization

Innovators in the mechanism marketplace

ECOsyStem Of SUAVE ContraCtS propose new SUAVE Contracts,

compete for user adoption.
Searcher’s choice o
.. . . .
of which contracts H'nJ_[S (explicit),
s + Side channels (|)

Raw user preferences, to activate -+
e.g. reserve prices,
wrapped in Bids | ¥
IR N Tx LogFilter -
~ header
R Tx Br m
L = _> Tx | Br 1§ proposal
MEV-Share, o= ; block
! Bundling o
Users opt-in to authorized =
Builder Contracts 20 b N A :
2 Merging, :> ~ o
TEE Kettle ------—--- ” 7 MEV-Boost
privacy boundary ' "

. i' _ Bundle merging may resolve conflicts. Building may be
Searchers may make credible commits limited to 1 final sequential execution?

through opaque builder contracts (todo?)

Decentralized Execution through TEE Kettle network

Public logs

L1

‘ <)/v\ Block
SUAVE Chain OCKS
— Bids
v
SUAVE
mempool

Local Forks
TEE Kettles create)/ ¢ \Y
local simulated forks, \l ~— : >
as specified by , B

SUAVE contract

applications. m

Public queries, hints, any modeled leakage

The TEE Deployment Motte & Bailey

The TEE Deployment Motte & Bailey

Self-hosted or cloud TEEs Cloud instances (e.g., Azure, IBM, ...), MPC / Threshold FHE
++ Convenience + Convenience + Best security, must break
++ Distributed resources + Physical security, incentive alignment(?) TEE *AND* multiple hosts

- Cost, not practical yet
- - Trust model, physical access - Often opaque policies, incentive alignment(?)

mEl Microsoft
Hl Azure

SUAVE Programming Examples

Modelling Flashbots Builder as SUAVE contract

function mevboost.build() {

// Pass #1: Estimate EGP of each bundle based on top-of-block sim
For each bundle in all_bundles();

st :=L1.topofblock.simulateEVM(bundle) Pass 1: Top of block
EGP[bundle] := st.queryEGP() simulation.
(EGP: Effective Gas

st := Ll.topofblock; block := [] Price, a measure of the
// Pass #2: Revisit 1in order by Pass#1 estimate the MEV obtained)
While blockspace remains, for each bundle by EGP: y

st := st.simulateEVM(bundle) Pass 2: In-order

EGP’ := st.queryEGP() Lsknmaﬁon }

If EGP’ decreases, or bundle fails: discard
Otherwise: block.append(bundle)

exportBlock(block)

Modelling WalruSuave as a SUAVE Contract

function submit_bid(uint qty, uint rsv) {
// Phase #1: On-chain bidding ensures data availability
// This could also be passed as signed messages
bids[msg.sender].push(Bid(qty,rsv));

}

function process _bids() {
// Phase #2: Use bisection to determine the strike price,
// Passing the residual demand to the AMM.
bundle = settle_and_residual(self.bids, self.amm)
mevboost.submit_bundle(bundle) // Submit onward to an auction

Modelling MEV-Share as a SUAVE contract

This contract allows searchers to submit a backrun. Bundles are submitted with
user defined hints about the bundle.

function submit_bundle(Bundle b, hints) public {

// Pass 1: on 1ingest... simulated top of block only

all bundles[b.ID] := (b, hints)

emit (hints,hints(b)) // Leak user-configured hints
}

function match_backrun(Bundle b, Tx br, hints) {
// Pass 2: build a bundle based on this bacRrun
b’,hints := flatten(all bundles[b.id], br, hints)
all bundles[b’.ID] := b’; mevboost.send bundle(b’)

Modelling MEV-Share as a SUAVE contract

We also need to modify the builder rule, to respect the MEV-share redist policy

function mevboost.build plus_mevshare() {

// Pass #1: Estimate EGP

For each bundle in all_mevshare_bundles();
st :=L1.topofblock.simulateEVM(bundle)
EGP[bundle] := st.queryEGP()
bundle.append(Generate Kickback transaction)

// Pass #2: Revisit in order by Pass#1 estimate

exportBlock(block)

PROF as a SUAVE contract - a simulation bypass

PROF bundles can be added to a block and exported, but they are NOT allowed
to be simulated EXCEPT in the very final step of exporting a block.
In other words, this bypasses the EGP simulation step of the sorting builder.

function mevboost_plusprof.build() {
// Ordinary mevboost.build

// Prof blocks
While blockspace still remains, for each prof bundle:
block.append(bundle)

exportBlock(block)

TEE Smart contract insights

Rollups for Free using TEEs

If we are using TEEs, we might as well also incorporate their use for attestation.
We can get the same functionality as zk SNARKSs, assuming the TEE functions
correctly.

So far, TEE-based smart contracts have NOT made use of this. Instead they have
preferred replication. This importantly means that if the TEE is compromised, it
does not change the integrity guarantees, i.e. printing tokens.

In the case of the SUAVE auction, what's at stake is short lived confidentiality
anyway, so this tradeoff makes sense. This is more applicable for SUAVE than
for user-privacy in general TEE Smart Contract applications.

Interesting new programming concept for TEE contracts

Hackin’ insight: TEE-based contracts like Secret and Oasis can turn their “view”
queries into off-chain programs. The reason is that these views are smart
contract-defined, but since they run in TEE they can have private state.

It makes sense to allow them to use encryption and message authentication
codes, in order to chain off-chain views together. It’s a TEE-based rollup.

On-chain computing:
on-chain on-chain on-chain on-chain slow, gassy

Decentralized TEE compute . .
Off-chain computing:

o CAElR i GAELR - Makes use of contract-defined

. _ view functions.

oft-chain || off-chain - View functions can access
TEE-contract MAC and encryption.
- Localmutable for local indexes

off-chain [—t off-chain

https://emojipedia.org/fuel-pump/
https://emojipedia.org/fuel-pump/
https://emojipedia.org/fuel-pump/
https://emojipedia.org/fuel-pump/

Off-chain computing example

B B B B contract {
X = hash(x); — X = hash(x); — X = hash(x); — X = hash(x); // Mutable fUﬂCtIOﬂ IterateS
i++ i++ i++ i++ function computeNext() ...
P S
on-chain \ Decentralized TEE compute / acceptEvidence

offchainNext [+ — offchainNext

contract {
// Off-chain function TEE kettles compute locally
function offchainNext(EncState) returns(EncState) view
/I On-chain function to accept result after off-chain compute
function acceptEvidence(EncState);

https://emojipedia.org/fuel-pump/
https://emojipedia.org/fuel-pump/
https://emojipedia.org/fuel-pump/
https://emojipedia.org/fuel-pump/

Side channels? Make them explicit... then mitigate them

In this ideal functionality, the use of simulateEVM explicitly generates an access
pattern trace. In fact this trace is quite rich as a starting point, and essentially
follows along with the program counter. Practically only signatures and, say, the
value of a random 32-byte field are protected. In this way the trace is a faithful
over-approximation of the actual side channels when run at full speed. It’s
explicit, so the market must price it in.

Gounterintaitive: Troll thought: this is side channel accelerationism.

Next, we can aim to remove side channels for specific recognized applications,
through ORAM or by computing on an abstracted form of the calldata (see mpc
backrunning)

Open Questions

- Mechanism design and analysis. This has been describing a platform, but not

at all making progress on the “Locally Strategy Proof” regime of compositional

mechanism analysis. Start with MEV-share+boost, which is very concrete?
Conjecture: MEV-share outperforms PROF for every participating user

- Security analysis. This has been a sketch of an ideal functionality model. Can
we instantiate it from an ldeal Functionality of TEE-based smart contracts?

- Builder contracts programming model. Haven't finished these examples yet,
but already the precompiles design questions are interesting. Modular designs for
building rules? Off-chain programming this needs more abstraction.

- Hybrid operation: interoperate with cryptography alternatives to TEE

Block building using a smart
Mechanism design contracts programming model
guided by logic of
credible commitments

Public innovation

marketplace Distributed Execution based

on TEEs and cryptography

Pragmatic generalization of
MEV-Boost, MEV-Share

