Lecture 08
Branch current method
Branch current method�
Branch current method�
R2
R1
R3
R4
R5
R6
us
+
-
n1
n2
n4
n3
i1
i2
i3
i4
i5
i6
Reference directions: the direction of each branch in the directed graph is the direction of current.
i1 +i2=i6🡪 i1 +i2-i6 = 0 (1)
At node n1
Six branches in the directed graph result in six unknowns (currents).
i3 +i4=i2🡪 i2 –i3-i4 = 0 (2)
At node n2
i4 +i5=i6🡪 i4 +i5-i6 = 0 (3)
At node n3
i2 *R2 + i3*R3 = i1*R1 (4)
i3 *R3 + i5*R5 = i4*R4 (5)
i1 *R1 + i5*R5 + i6*R6 = us (6)
Branch current method�
Branch current method�
7Ω
70V
+
-
6V
+
-
6A
7Ω
+
-
u=?
11Ω
i1
i2
i3
a
b
To solve i1 i2 i3 and the power of each voltage source.
At node a, i1 +i2-i3 = 0 (1)
i1 *7 + 6 – i2*11 -70 = 0 (2)
i2 *11 - 6 + i3*7 = 0 (3)
7*i1 – 11*i2 = 64 (2)
i1 + i2 - i3 = 0 (1)
11*i2 + 7*i3 = 6 (3)
1 1 -1
7 -11 0
0 11 7
i1
i2
i3
=
0
64
6
Branch current method�
1 1 -1
7 -11 0
0 11 7
i1
i2
i3
=
0
64
6
1 1 -1
7 -11 0
0 11 7
i1
i2
i3
=
0
0
0
0
-64
-6
1
1 1 -1
0 -18 7
0 11 7
i1
i2
i3
=
0
0
0
0
-64
-6
1
row2 – row1*7 🡪 row2
1 1 -1
0 -18 7
0 0 203/18
i1
i2
i3
=
0
0
0
0
-64
-406/9
1
row3 + row2*11/18 🡪 row3
i3 = 4A
i2 = -2A
i1 = 6A
P70v = 70*6 = 420W (emitting power)
P6v = -70*2 = -140W (absorbing power)
Branch current method�
7Ω
70V
+
-
6A
7Ω
+
-
11Ω
i1
i2
i3
a
b
+
-
u
To solve i1 i2 i3 and the power of each voltage source.
At node a, i1 +i2-i3 = 0 (1)
i1 *7 – i2*11 + u -70 = 0 (2)
i2 *11 + i3*7 – u = 0 (3)
i2 = 6A (4)
Branch current method�
To solve i1 i2 i3 and u.
7Ω
70V
+
-
7Ω
11Ω
i1
i2
i3
a
b
+
-
5u
+
-
u
At node a, i1 +i2-i3 = 0 (1)
i1 *7 – i2*11 + 5u -70 = 0 (2)
i2 *11 + i3*7 – 5u = 0 (3)
7*i3 = u (4)