

COVER: A Comprehensive Video Quality Evaluator

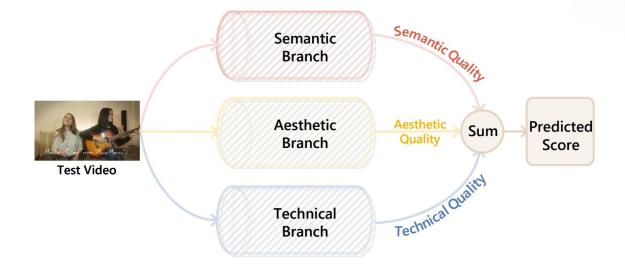
Chenlong He¹ Qi Zheng¹ RuoXi Zhu¹ XiaoYang Zeng¹ Yibo Fan¹ Zhengzhong Tu²

¹ Fudan University ² University of Texas at Austin CVPRW 2024

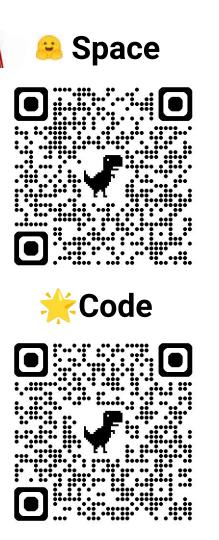
Now faculty of CS at Texas A&M

Winner of AIS 2024 UGC

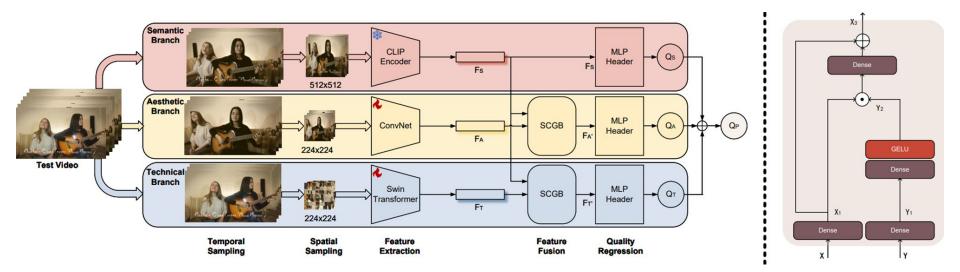
Video Quality Challenge 🏆



Problem statement


- **UGC** videos often suffer from various unpredictable distortions at different levels, such as low-level technical, mid-to-high-level aesthetic, and high-level semantic, which impact users' quality-of-experience (QoE)
- Existing VQA models are mainly designed to quantify quality from the technical aspect, such as distortions like noise, blur, compression artifacts.
- The demand for **high-resolution** and **high-frame-rate** videos on social media platforms presents new **challenges** for VQA tasks, as they must ensure **effectiveness** while also meeting **real-time requirements**

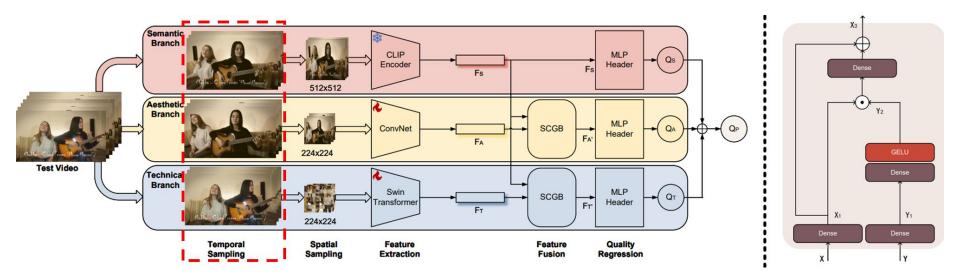
 \rightarrow To develop a highly efficient and comprehensive evaluator for UGC


Our model: **COVER**

Our model: **COVER**

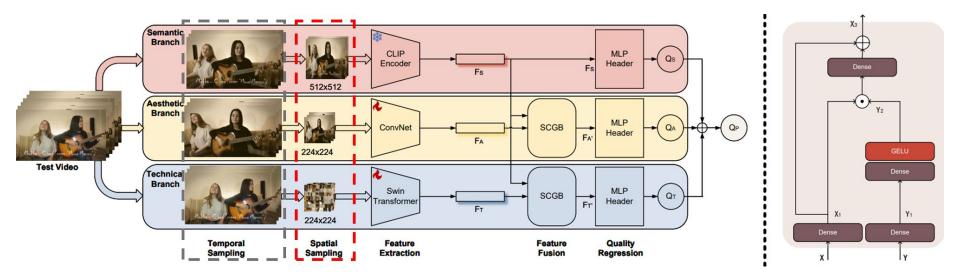
COVER processes the input video in five steps:

I. Temporal Sampling


II. Spatial Sampling

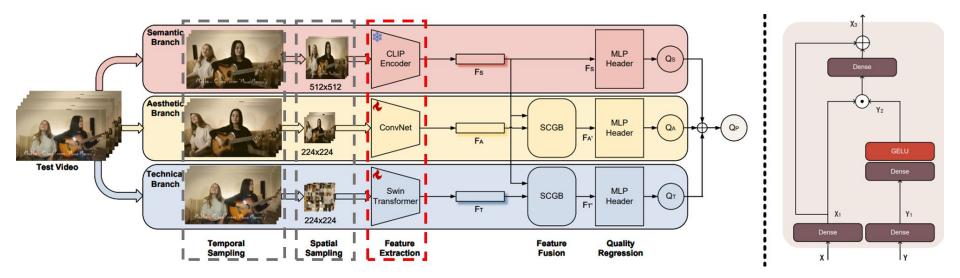
III. Feature Extraction

IV. Feature Fusion


V. Quality Regression

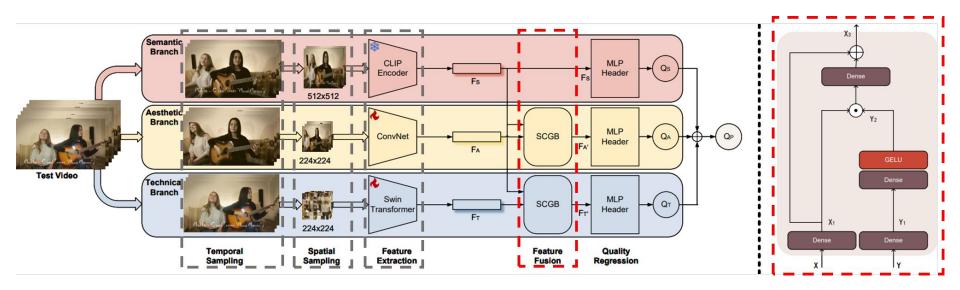
Step I: Temporal Sampling

- The **semantic** branch randomly samples **one** picture from **every second** of an input video
- The **aesthetic** branch randomly samples **two** picture from **every second** of an input video
- The technical branch randomly samples two picture from every second of an input video


Step II: Spatial Sampling

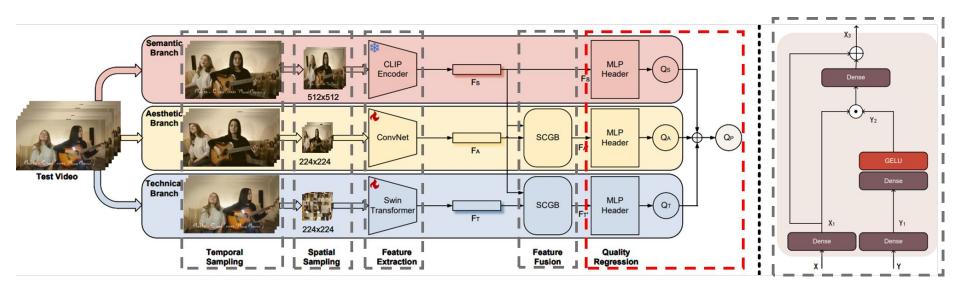
- The **semantic** branch **resizes** the frames from their original size to **512x512** (CLIP pre-trained input)
- The **aesthetic** branch **resizes** the frames from their original size to **224x224** (Aesthetics is robust to size)
- The technical branch sampled fragments* the pictures to 224x224 (inspired from Fast-VQA*)

* H. Wu et al, FAST-VQA: Efficient End-to-end Video Quality Assessment with Fragment Sampling, ECCV 2022


Step III: Feature Extraction

- The **image encoder** of CLIP* is used as the backbone of the **semantic branch**; A **ConvNet** is used for the **aesthetic branch**; a **Swin Transformer** is used for the **technical branch**
- During training, the backbone of the semantic branch is #frozen, while the backbones of the aesthetic branch and the technical branch are chine-tuned

* OpenAI, Contrastive Language–Image Pre-training


Step IV: Feature Fusion

- To enable feature interactions, the semantic feature is used to perform channel-wise cross-gating* on both the technical feature and the aesthetic feature
- Simple Cross-Gating Block (SCGB) retains only one gating pathway and channel-wise interactions, eliminating operations related to spatial interactions

* Z. Tu et al, MAXIM: Multi-Axis MLP for Image Processing, CVPR 2022

Step V: Quality Regression

- The features from each branch are individually fed into an **MLP header** to predict quality scores. The **final** predicted quality **score** is the **sum** of the quality scores from the **three branches**
- While **training** MLP headers, COVER **minimizes** the relative **loss** between the predictions of each branch and the overall opinion MOS

$$\mathcal{L}_{all} = \mathcal{L}_{rel}(Q_S, MOS) + \mathcal{L}_{rel}(Q_A, MOS) + \mathcal{L}_{rel}(Q_T, MOS)$$

Experiments

Metadata	YouTube-UGC [38]		
Publication year	2019		
Source content	YouTube		
Number of contents	1,380		
Resolution	4k-360p		
Framerate	15,20,24,25,30,50,60 fr/sec		
Video duration	20 seconds		
Experiment	Crowdsourcing (AMT)		
Rating scale	Continuous rating 1-5		
Number of subjects	>8,000		
Number of ratings	170,159 (123 votes/video)		

Team	Method	# Params. [M]	Runtime [ms]	MACs [G]
FudanVIP	COVER [9]	61.02	79.37	NA
TVQE	TVQE	8254	705.30	1127.35
Q-Align	Q-Align [40]	8198	1707.06	991.17
SJTU MMLab	SimpleVQA+ [27]	207.7	245.512	140.175
Baseline	NDNet [31]	6.95	209.43	479.06
Baseline	MobNet	2.22	347.51	1585.32

Table 3. High-Resolution Efficiency study using as input a clip of 30 frames of 4K resolution 3840×2160 . We report the runtime and MACs for the complete clip of 30 frames.

Method	SROCC	KROCC	PLCC	RMSE
BRISQUE [17]	0.4398	0.2934	0.4525	0.5608
GM-LOG [41]	0.3501	0.2336	0.3424	0.5904
VIDEVAL [28]	0.7946	0.5959	0.7691	0.4024
RAPIQUE [29]	0.7483	0.5556	0.7482	0.4177
FAVER [45]	0.7897	0.5832	0.7898	0.3861
NIQE [18]	0.2479	0.1689	0.3146	0.5976
HIGRADE [13]	0.7639	0.5524	0.7507	0.4156
FRIQUEE [5]	0.7182	0.5268	0.7091	0.4439
CORNIA [42]	0.5988	0.4113	0.5905	0.5064
TLVQM [12]	0.6690	0.4833	0.6412	0.4831
CLIPIQA+ [32]	0.5374	0.3734	0.5801	0.5128
FasterVQA [38]	0.5345	0.3716	0.5438	0.5284
FASTVQA [37]	0.6493	0.4676	0.6792	0.4621
DOVER [39]	0.7359	0.5391	0.7653	0.4053
FasterVQA*	0.6937	0.4965	0.6909	0.4552
FASTVQA*	0.8617	0.6716	0.8669	0.3139
DOVER*	0.8761	0.6865	0.8753	0.3144
FasterVQA* (Sec. 4.6)	0.8170	0.6380	0.7510	-
AVT (Sec. 4.5)	0.8775	0.6909	0.8785	-
SimpleVQA+ [27]	0.9060	0.7280	0.9110	-
Q-Align [40]	0.9080	0.7340	0.9120	
TVQE (Sec. 4.2)	0.9150	0.7410	0.9182	
COVER [9]	0.9143	0.7413	0.9122	0.2519

Table 2. Extended comparison with classical and previous *state-of-the-art* methods. We report some numbers from [9]. "*" indicates models were fine-tuned using the AIS Challenge dataset.

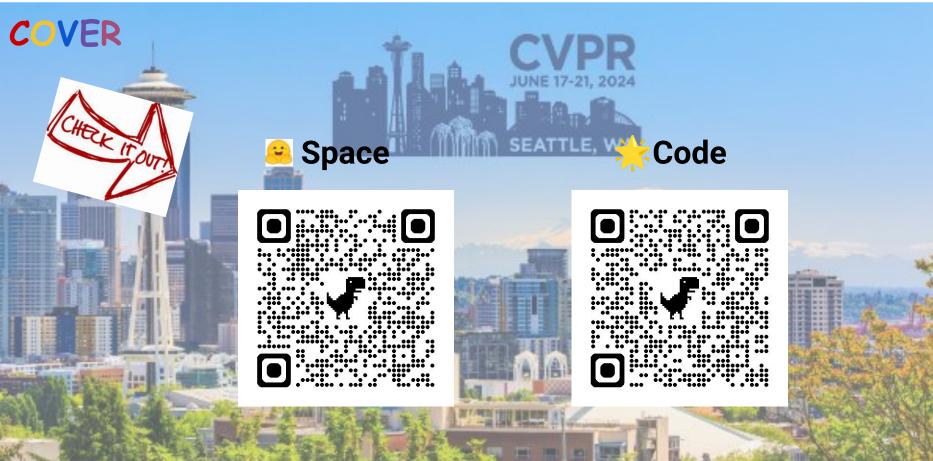

Ablation Study

Table 7. Ablation studies of the component designs of COVER on the YouTube-UGC database [38].

No. –		Branch		CCCD	;	YouTube-UGC [88] Validation	
	Technical	Aesthetics	Semantic	SCGB -	SROCC ↑	KROCC \uparrow	PLCC \uparrow	$RMSE\downarrow$
1	 				0.8659	0.6759	0.8650	0.3159
2		 Image: A set of the set of the			0.8234	0.6295	0.8439	0.3378
3			 		0.8005	0.6096	0.8311	0.3502
4	 Image: A set of the set of the	 Image: A set of the set of the			0.8960	0.7180	0.8928	0.2916
5	 		 		0.8824	0.6997	0.8890	0.2883
6		~	~		0.8347	0.6455	0.8582	0.3232
7	 Image: A set of the set of the	 Image: A set of the set of the	 		0.9006	0.7260	0.9052	0.2731
8	 	 	 	×	0.9143	0.7413	0.9165	0.2519

- No.1-3: The technical branch has the best performance among the three branches
- No.4-6: Combining either the aesthetic branch or the semantic branch with the technical branch can lead to significant performance improvements
- No.7-8: Adding the SCGB feature fusion block can further push the performance limit by approximately 1.5% in SROCC

Thank you!

