Simulating Snowfall and Snow Adhesion on Surfaces
Nitin Kanchinadam & Sophie Tsai
Outline
Motivation
Motivation
Motivation
Snow Formation
How Do Snowflakes Form: Criteria
Snowflake Size and Shape
Liquid Water Content (LWC)
Wet vs Dry Snow
Wet Snow
Dry Snow
Snowflake Model - Moeslund et al.
Snowflake Model - Moeslund et al.
�+ random number from uncertainty�
C (proportionality constant) -
Dry Snow: 0.170 kg/m2
Wet Snow: 0.724 kg/m2
D: diameter (meters)
T: temperature (°C)
Snowflake Model - Moeslund et al.
Snowflake Model - Moeslund et al.
Snowflake Model - Cellular Automata
Snowflake Model - Reiter’s Model
Snowflake Model - Reiter’s Model
ut(z): amount of water that participates in diffusion
vt(z): the amount that does not participate
𝛾 : vapor addition
α: vapor diffusion
ūt−(z): average of ut− for the 6 nearest neighbors of cell z
Snowflake Model - Reiter’s Model
Snowflake Model - Phase Field Model
Snowflake Model - Demange et al.
Snowflake Model - Demange et al.
Snowflake Model - Demange et al.
Snowflake Model - Demange et al.
Snowfall Dynamics
Modeling Snowfall - Moeslund et al.
Modeling Snowfall - Moeslund et al.
Modeling Snowfall - Moeslund et al.
msnow: snowflake mass
g: gravitational acceleration
Umaximum: maximum vertical velocity due to air resistance
Dry Snow: [0.5m/s; 1.5m/s]
Wet Snow: [1m/s; 2m/s]
Ufluid: velocity of air relative to snowflake
Modeling Snowfall - Moeslund et al.
∇·: divergence
u: vector field of the velocity
p: pressure
Modeling Snowfall - Moeslund et al.
Pa: point to find velocity for
Pd: departure point
u: divergence-free velocity field
u*: velocity field after convection
∇p: gradient of the pressure field
Modeling Snowfall - Moeslund et al.
Surface Properties
Key Road Properties
Physical Properties
Thermophysical Properties
Methods of Heat Transfer
Convection is the least relevant method of heat transfer to our situation
LWC & Adhesiveness
Wet Snow
Dry Snow
Water Content of Surfaces
Modeling Road Conditions
Combination of two 1D models
Modeling Road Conditions
Road Surface Temperature Evolution
Snow & Surface Interactions
Particle Interactions - Interparticle Forces
Hydrogen Bonding
δ+
δ+
δ+
δ-
Hydrogen Bonding
Van der Waals Forces
Modeling Snow Adhesion - DEM Simulation
Discrete Element Method (DEM)
Modeling Snow Adhesion - DEM Simulation
W: work of adhesion
R*: effective radius of contact
K1 ≈ 0.9355�ρ: particle density�R: particle radius�W: work of adhesion�E*: effective elastic modulus
Modeling Snow Adhesion - DEM Simulation
μf: sliding friction coefficient
Fn: normal contact force
Fc: pull-off force
μr: rolling friction coefficient kn: elastic stiffness Δγ/γ�δn: normal overlap�ωr: relative rotation rate
SNTHERM (CRREL, 1991) - Intro
SNTHERM (CREEL, 1991) - Layers
SNTHERM (CREEL, 1991) - Conservation Equations
SNTHERM (CREEL, 1991) - Limitations
SnowModel (Liston & Elder, 2006) - Intro
SnowModel (Liston & Elder, 2006) - MicroMet
SnowModel (Liston & Elder, 2006) - EnBal
SnowModel (Liston & Elder, 2006) - EnBal
Conductive Heat Transfer
Portion of Expanded Surface Temperature Equation
SnowModel (Liston & Elder, 2006) - SnowPack
SnowModel (Liston & Elder, 2006) - SnowPack
SnowModel (Liston & Elder, 2006) - SnowPack
SnowModel (Liston & Elder, 2006) - Results
SnowModel (Liston & Elder, 2006) - Results
SnowModel (Liston & Elder, 2006) - Limitations
Overview
Snow Formation & Snowfall
Snow Formation
Snowfall
Snow & Surface Interactions
Future Work
Future Work
References
American Trucking Associations. (2023, July 19). Truck Freight Tonnage and Revenues Rise in 2022, According to Report. American Trucking Associations. Retrieved April 24, 2025,
from
https://www.trucking.org/news-insights/truck-freight-tonnage-and-revenues-rise-2022-according-report#:~:text=Among%20the%20findings%20in%20Trends,freight%20bill%
20%E2%80%93%20generating%20%24940.8%20billion.
Bouilloud, L., & Martin, E. (2006, March 1). A Coupled Model to Simulate Snow Behavior on Roads. Journal of Applied Meteorology and Climatology, 45(3). https://doi.org/10.1175/JAM2350.1
Demange, G., Zapolsky, H., Patte, R., & Brunel, M. (2017). A phase field model for snow crystal growth in three dimensions. npj Comput Mater, 3. https://doi.org/10.1038/s41524-017-0015-1
Eidevåg, T., Abrahamsson, P., Eng, M., & Rasmuson, A. (2020, February 1). Modeling of dry snow adhesion during normal impact with surfaces. Powder Technology, 361, 1081-1092. https://www.sciencedirect.com/science/article/pii/S0032591019309143
Federal Highway Administration. (2024, September 6). Snow and Ice. U.S. Department of Transportation. Retrieved April 24, 2025, from
https://ops.fhwa.dot.gov/weather/weather_events/snow_ice.htm#:~:text=Every%20year%2C%20nearly%20900%20people,crashes%20during%20snowfall%
20or%20sleet
Heil, J., Mohammadian, B., Sarayloo, M., Bruns, K., & Sojoudi, H. (2020). Relationships between Surface Properties and Snow Adhesion and Its Shedding Mechanisms. Applied Sciences. https://doi.org/10.3390/app10165407
Jordan, R. (1991). A One-Dimensional Temperature Model for a Snow Cover. Cold Regions Research and Engineering Laboratory Special Report.
Kim, S.-K., & Lee, K.-H. (2024, December 10). Evaluation of Heat Transfer Properties of Asphalt Mixtures. KSCE Journal of Civil Engineering. https://www.sciencedirect.com/science/article/pii/S1226798824052851
Libbrecht, K. G. (2001). Morphogenesis on Ice: The Physics of Snow Crystals. Engineering & Science. https://www.its.caltech.edu/~atomic/publist/engsci2.pdf
Liston, G. E., & Elder, K. (2006). A distributed snow-evolution modeling system (SnowModel). Journal of Hydrometeorology, 7(6), 1259-1276.
https://research.fs.usda.gov/treesearch/26319
Liston, G. E., & Elder, K. (2006). A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). Journal of Hydrometeorology, 7(April), 217-234.
https://research.fs.usda.gov/treesearch/26813
Moeslund, T. B., Madsen, C. B., Aagaard, M., & Lerche, D. (2005). Modeling Falling and Accumulating Snow. Vision, Video and Graphics. https://www.researchgate.net/publication/267400785_Modeling_Falling_and_Accumulating_Snow
Reiter, C. A. (2005). A local cellular model for snow crystal growth. Chaos, Solitons and Fractals 23. https://www.patarnott.com/pdf/SnowCrystalGrowth.pdf
Sturm, M., Holmgren, J., & Liston, G. E. (1995). A Seasonal Snow Cover Classification System for Local to Global Applications. Journal of Climate, 8(5), 1261-1283.
https://journals.ametsoc.org/view/journals/clim/8/5/1520-0442_1995_008_1261_assccs_2_0_co_2.xml
Williams, M. W. (n.d.). SNTHERM. MARK W. WILLIAMS, Ph.D. Retrieved April 24, 2025, from http://snobear.colorado.edu/SnowHydro/Modeling/sntherm.html