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Introduction

● Feature extraction: MFCCs, 
● Acoustic model P(Y|⍵): phoneme mapping
● Language model P(⍵): probability of input sequences
● Decoder: 

Feature 
Extraction

Acoustic 
Model

Language Model

Decoder Decoded 
TextHello!



Language modeling
Subword-based language models:

+ Neural network language models (BERT, GPT-2)

+ N-gram language models: P(W)=P(⍵1)P(⍵2)P(⍵3)...P(⍵N)

“Tonight I am making ___” (“dinner” or “breakfast”)

P(dinner|Tonight I am making) > P(breakfast|Tonight I am making)

+ Examples

How to Wreck a Nice ?  1-gram: P(⍵6)?

How to Wreck a Nice ? 2-gram: P(⍵6|⍵5)?

How to Wreck a Nice ? 3-gram: P(⍵6|⍵5,⍵4)?



Training Model



Training Model
The models have no knowledge of the language or input sequences

To train the models by following steps:

+ Split the input text into smaller chunks
+ Represent these inputs as vectors

Drawbacks of word-based tokenization:

+ Rare or unseen words
+ Special characters
+ Big vocabulary
+ Morphological language



Word-level Tokenization



Character-level Tokenization



Character-level Tokenization
What if the characters is tokenized instead of words?

● Pros: Handle unknown or rare words

● Cons:

Lack of meaning

Increased input computation

Limits network choices



Word vs Character Segmentations



Subword Segmentations (Tokenization)
Objective: handle OOV problems with finite vocabulary

Example:

+ “any” + “place” = “anyplace”
+ “any” + “how” = “anyhow”
+ “any” + “body” = “anybody”

Efficient subword chunks:

“Unfortunately” = “un” + “for” + “tun” + “ate” + “ly”



Subword Segmentation approaches

Subword approaches

Non-Linguistic segmentationLinguistic segmentation

Syllables (often no 
meaning) + morphemes 

(meaningful)

Fixed size of 
subword vocabulary 

created
Morfessor Byte pair encoding (BPE) + 

Unigram [1]



Morfessor tool
● Probabilistic generative models and tool -> create segmentation models
● words=compounds -> segmented into construction (morphs) + atoms 

(letter)
● Plan to use
● Example:

○ morfessor-train -s train.bin train.txt
○ morfessor-segment -l train.bin train.txt
○ These command first build the morfessor model “train” and use that 

model to segment the text file train.txt 
○ Compounds: kaksi brittiläistä -> kaksi_ brittiläis tä_ 



SentencePiece Tool
● Treat whitespace“ “ as “_” symbol
● Lossless Tokenization
● Skip Word Segmentation
● Integer Mapping
● Example:

○ spm_train --input=stt.train.txt.utf8 --model_prefix=bpe --vocab_size=8000 
--model_type=bpe

○ spm_encode --model=bpe.model  --nbest_size=-1 --alpha=0.5 
stt.eval.txt.utf8 --output=bpe_eval.txt 

○ Bpe algorithm: kaksi brittiläistä -> ▁kaksi ▁brittiläistä
○ Greedy unigram algorithm: kaksi brittiläistä -> ▁kaksi ▁brittiläi stä



Evaluation metrics
● Extrinsic evaluation

○ Measures the performance of actual tasks

○ How well the model did on some task (e.g. WER)

○ e.g. speech recognition, spelling corrector, machine translation...

● Intrinsic Evaluation
○ Measures some type of “internal” features of the model

○ e.g. perplexity, cross entropy...



Perplexity (1/2)
● Perplexity is an intrinsic metric of a language model

● Can be thought of as a one kind of a game
○ How well can the language model predict the next word?

● A good language model should be confident 

(and correct)

I would like to drive a _________!

car (0.1)

bike (0.01)

...

tomato (1e-9)



Perplexity (2/2)
● Perplexity is the probability (of a test set) normalized by the number of 

words
○ If P(...) ≈ 1, then perplexity is low. Otherwise, perplexity is high.

○ Normalized by the word count because a lot of words makes the probability lower by 

definition



Cross Entropy
● Another intrinsic metric for evaluating a language model

● Measures a difference between two probability distributions

cat          dog          puppy          snake          rabbit

0%           0%           100%              0%               0%True distribution

Model distribution 11%        16%            60%              2%               11%



Experiments (Finnish) (1/2)
● Preliminary experiments with subword algorithms

● Setup

○ 1.5M sentences for training, ~800k unique words

○ 10K sentences for evaluation, ~32k unique words

● Experiment steps

○ Use Morfessor or SentencePiece (BPE, greedy unigram) for subwords

○ Train {1, 2, 3}-gram language models

○ Evaluate OOV and perplexity



Experiments (Finnish) (2/2)

Algorithm Vocab size 1-gram 2-gram 3-gram

OOV PPL OOV PPL OOV PPL

Morfessor 10707 0 2389 0 368 0 237

BPE 10707 0 2979 0 454 0 271

Greedy unigram 10707 0 1699 0 382 0 226

● Findings
○ Vocabulary size significantly lower as expected in comparison with word-based data

○ Perplexity gets quite low as well for 2-gram and 3-gram models

○ OOV is zero for every n



Next steps
● Try different subword algorithms and vocabulary sizes

○ Effect of the vocabulary size is important to evaluate

● Train a couple of language models using the subword tokens
○ For evaluation, we should train the same model with word-based tokens

○ We aim for having one DL based model as well

● Evaluate the language models on a downstream task
○ We’ll use an speech recognition as the downstream evaluation task



Conclusion
● Subwords can be used in place of regular word-based tokenization

○ Their primary goal is to help with vocabulary issues (e.g. OOV)

● Tools for subwords: BPE, Morfessor and SentencePiece

● Two ways to evaluate
○ Extrinsic: actual performance on a task

○ Intrinsic: e.g. perplexity

● Just a fancy way to split text into tokens
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Q&A Time

Thank you for your participation!


