4
N

EIP-3607/

Reject transactions from senders with deployed code



Motivation

Ethereum address are 20 bytes (160 bits)

Finding a collision is unlikely (2280 operations) but not impossible
Collision between EOA and Contract could be found

Would allow an attacker to drain a contract

e Can be prevented by disallowing transactions to be send from addresses with
deployed contract code




Implementation in geth

diff --git a/core/state transition.go b/core/state transition.go
index 18777d8d4..3b25155¢c6 100644

func (st *StateTransition) preCheck() error {
st.msg.From().Hex(), msgNonce, stNonce)

}
}
// Make sure the sender is an EOA
if codeHash := st.state.GetCodeHash(st.msg.From()); codeHash != emptyCodeHash {
return fmt.Errorf("%w: address %v, codehash: %s", ErrSenderNoEOA,
st.msg.From().Hex(), codeHash)
}
// Make sure that transaction feeCap is greater than the baseFee (post london)
if st.evm.ChainConfig().IsLondon(st.evm.Context.BlockNumber) {
if 1 := st.feeCap.BitLen(); 1 > 256 {




Testing

Contracts can be deployed on EOA's in the genesis

Testing did rely heavily on EOA's also containing code

Many tests had to be rewritten

EIP-3607 couldnt be merged into Geth without testing fixed

An inverse test (testing that sending from contracts fails) could not be
merged in before the EIP was merged in Geth

e Update to the yellowpaper was merged to solidify the rule




Gotcha’s

e Old version of gnosis safe uses eth_call to construct the transaction as if it
originated from the contract.

e Thus EIP-3607 is not in place if the transaction is not real (eth_call,
estimate_gas,...)

e EIP-3607 is implemented on the CodeHash not on CodeSize, etc.

e In Geth GetCodeHash could return emptyCodeHash or common.Hash{}

e In both cases we accept the transaction




