
Welcome

Overview of machine learning and discussion



Introduction

Intro - self, course material and teaching methodology: top down vs. bottom up.

Topics:

- Machine learning/ deep learning quick overview. What can and can’t be achieved?
- Random Forests, Naive Bayes, Neural Nets, Collaborative filtering. 
- Data Leakage
- Overfitting
- The importance of picking a good validation set: cross validation? Random sample?
- How much data is enough? Data augmentation
- Loss functions: Mean Squared Error, cross entropy, binary crossentropy.
- Learning rate finder - paper.
- Domain transfer.



Machine learning / deep learning definition

https://learn.microsoft.com/en-us/azure/machine-learning/concept-deep-learning-vs-machine-learning

- Deep learning is a computer technique 
to extract and transform data.

- Using multiple layers of neural 
networks. 

- Each of these layers takes its inputs 
from previous layers and progressively 
refines them. The layers are trained by 
algorithms that minimize their errors 
and improve their accuracy. In this 
way, the network learns to perform a 
specified task. 



Brief history of neural nets:

- 1943 McCulloch and Pitts develop a mathematical model of an artificial 
neuron. “Because of the “all-or-none” character of nervous activity, neural events 
and the relations among them can be treated by means of propositional logic. It is 
found that the behavior of every net can be described in these terms”

- 1959-1969, Perceptrons published, in which Marvin Minsky proved that a single 
layer of neurons was unable to learn X-OR (e.g). 

- He also showed that using multiple layers would allow this issue to be 
addressed. 

- Only the first of these insights was recognized, and global research on neural nets 
stalled for the next 2 decades!

- 1986 James McClellan & David Rumelhart publish Parallel Distributed Processing

https://link.springer.com/article/10.1007/BF02478259


Parallel distributed Processing (1986)

- Basic premise: computer programs work very differently to brains, which is why they’re so 
bad at things like image recognition and other human/animal intelligence solvable problems. 

- PDP provided “a computational framework which seems closer than other frameworks to the 
style of computation as it might be done in the brain. 

- PDP requires:
1. A set of processing units
2. A state of activation
3. An output function for each unit
4. A pattern of connectivity among units
5. A propagation rule for propagating patterns of activities through the network of connectivities
6. An activation rule for combining the inputs impinging on a unit with the current state of that unit to produce an output for the unit
7. A learning rule whereby patterns of connectivity are modified by experience
8. An environment within which the system must operate



80s and 90s

Neural networks used for practical purposes, but a misunderstanding of the theoretical 
issues held back the field:

Universal approximation theorem: a 2 layer neural network (with a nonlinearity) can 
solve any computable problem to an arbitrarily high level of accuracy, provided the right 
set of parameters, and enough of them to represent the problem.

People worked with 2 layer nets and one nonlinearity, and tried to scale this laterally. 

In practice, deeper nets train more quickly and use less computation. This was first 
discovered through experimentation in the 90s.



- Natural language processing (NLP):: Answering questions; speech recognition; 
summarizing documents; classifying documents; finding names, dates, etc. in documents; searching 
for articles mentioning a concept
- Computer vision:: Satellite and drone imagery interpretation (e.g., for disaster resilience); face 
recognition; image captioning; reading traffic signs; locating pedestrians and vehicles in autonomous 
vehicles
- Medicine:: Finding anomalies in radiology images, including CT, MRI, and X-ray images; 
counting features in pathology slides; measuring features in ultrasounds; diagnosing diabetic 
retinopathy
- Biology:: Folding proteins; classifying proteins; many genomics tasks, such as tumor-normal 
sequencing and classifying clinically actionable genetic mutations; cell classification; analyzing 
protein/protein interactions
- Image generation:: Colorizing images; increasing image resolution; removing noise from 
images; converting images to art in the style of famous artists
- Recommendation systems:: Web search; product recommendations; home page layout
- Playing games:: Chess, Go, most Atari video games, and many real-time strategy games
- Robotics:: Handling objects that are challenging to locate (e.g., transparent, shiny, lacking 
texture) or hard to pick up
- Other applications:: Financial and logistical forecasting, text to speech, and much more...

Deep Learning is now best in the world in the following areas:



Normal programming paradigm:



Components for training a model



Process for training a model





Limitations Inherent To Machine Learning (supervised) 

- A model cannot be created without data.

- A model can only learn to operate on the patterns seen in the input data used to 
train it.

- This learning approach only creates predictions, not recommended actions.

- It's not enough to just have examples of input data; we need labels for that data 
too (e.g., pictures of dogs and cats aren't enough to train a model; we need a label 
for each one, saying which ones are dogs, and which are cats).



Out of domain data

- Models used to make predictions on types of data not in the training set will 
be less reliable. 

- E.g. If we built a classifier trained on images of dogs from a google search, 
then tried to apply it to cctv camera footage, we would expect it to perform 
poorly. 

- The model specifically is optimized to make predictions based on patterns it 
has seen in the past.

- https://www.flawedfacedata.com/

Has anybody else come across a case where a model is used on out of domain 
data?

https://duckduckgo.com/?q=dog&t=ffab&atb=v307-1&iar=images&iax=images&ia=images
https://duckduckgo.com/?q=dog+caught+on+cctv&t=ffab&atb=v307-1&iar=images&iax=images&ia=images
https://www.flawedfacedata.com/


Domain Shift

- Over time things in the world change. People’s behaviour, the economy, 
technology etc. 

- A model which was once providing accurate and valid predictions can become 
outdated as the features which were used to train it no longer represent the 
features found in the real world. 

Has anyone had to deal with domain shift in their work? Or does anyone know any 
interesting examples?



Feedback loops

Once a model is in production, it can become an influencing component of the 
environment it is trying to make predictions of. 

This can create a feedback loop, where the model causes unintended and often 
undesirable changes to the system it is embedded in. 

Example: YouTube’s recommendation system. Designed to increase the amount 
of time a user spends watching YouTube, the recommender would promote videos 
‘light on facts and heavy on speculation’, and promote conspiracy theories.

https://www.nbcnews.com/tech/social-media/algorithms-take-over-youtube-s-recommendations-highlight-human-problem-n867596


Feedback loops: predictive policing example

● A predictive policing model is created based on where arrests have been made in the past. 
In practice, this is not actually predicting crime, but rather predicting arrests, and is 
therefore partially simply reflecting biases in existing policing processes.

● Law enforcement officers then might use that model to decide where to focus their police 
activity, resulting in increased arrests in those areas.

● Data on these additional arrests would then be fed back in to retrain future versions of the 
model



Data

- Split into independent and dependent variable.

Independent var (x) 
(features)
E.g. an image, lat/long, 
num of rooms

Dependent var (y)
(labels)
E.g. ‘cat’ ‘dog’ for 
categorical,
Price, 



Data
- Split into training and validation set
- We do this so that we can evaluate the model’s performance on data it has 

never seen before. E.g. 

Training set Validation set

Features Labels Features Labels

Data



Overfitting

Source: Andrew Ng’s Machine Learning Coursera class



The importance of picking a good validation set

- The validation data is used to measure how well the model is doing on unseen data. 
- The validation set should be a measure of how well the model will perform in the 

real world. 

How to pick?

This is ok sometimes but…

- Advantages / disadvantages / considerations

Pick 80% for the training set 20% 
validation

Randomly shuffle the data

Source: How (and why) to create a good validation set

https://www.fast.ai/posts/2017-11-13-validation-sets.html


Validation set e.g. time series

In this scenario we’d like to predict sales 
at a point in the future. 

If we just shuffled the data and took a 
random sample for the validation set…

Source: How (and why) to create a good validation set

https://www.fast.ai/posts/2017-11-13-validation-sets.html


Validation set e.g. time series

The validation samples would always 
lie pretty close to samples seen in the 
training data. The model would be able 
to ‘fill in the gaps’.

This isn’t really what we are trying to 
validate.

What we’d actually like to find out is 
how well does our model do at 
predicting future values. 

Source: How (and why) to create a good validation set

https://www.fast.ai/posts/2017-11-13-validation-sets.html


Validation set e.g. time series

A better way to construct the validation set 
would be to pick values in the future 
relative to the training data. This way the 
validation score will indicate how well the 
model might perform on future events. 

Source: How (and why) to create a good validation set

https://www.fast.ai/posts/2017-11-13-validation-sets.html


Cross Validation

Discarding 20% of the data just to 
validate the model seems like a waste 
of that 20%. 

Cross validation provides a way to use 
100% of the data for training, whilst still 
providing a validation score.

Cross-validation only works in the same 
cases where you can randomly shuffle 
your data to choose a validation set.

A B C D E

DATA

Fold Training Validation

1 BCDE A

2 ACDE B

3 ABDE C

4 ABCE D

5 ABCD E



Validation set discussion: example 

Distracted driver recognition:

In this kaggle competition you are given driver images, each taken in a car with a 
driver doing something in the car (texting, eating, talking on the phone, makeup, 
reaching behind, etc). Your goal is to predict the likelihood of what the driver is 
doing in each picture.

The training set contains pictures from 10 different drivers 

How should the validation set be constructed?

https://www.kaggle.com/competitions/state-farm-distracted-driver-detection/data


Data Leakage - Example 1 - fields as a proxy

Data leakage occurs when information is present in the training set which would 
not be available in production. 

Example 1: A company builds a model to predict which interviewees to hire, using 
past interview data as training data. 

Data leakage could occur when the cell phone field of a candidate is only filled in 
for candidates invited back for a second interview. 

The cell phone field becomes a proxy for the interviewer’s confidence in that 
candidate. Consider what would happen for years 2019, 2020, next year.

How would the validation score look?



Data Leakage - Example 2 - leaking distribution

- Consider a time series trend where the validation set contains features with a 
different distribution than the training set.

- We might want to fill in missing values in the training set with the mean value, or 
scale the values to lie between zero and 1 by dividing by the maximum value. 

- If we do this before making the train/valid split, the values in the validation set will 
affect the distribution of the values in the training set. 

- The validation set is supposed to represent unseen data - so its having an effect on 
the training set is not ok!

https://docs.google.com/spreadsheets/d/1c-5BRVJq3tfVEIlsM53Pa6hsDxZZ0hpK3PCpA
VuHNwM/edit#gid=0



Learning rate 

Low High



Learning rate finder

One way of finding the optimal 
learning rate:

Start with a super low (10e-7) lr

Increment the lr a tiny bit each mini 
batch

Plot the loss for each learning rate. 

Pick the LR one order of magnitude 
before the loss starts to diverge. 

Works well for SGD



ADAM optimizer

ADAM optimizer has an adaptive learning rate for every parameter in the model. 

It works by keeping track of the gradient for each parameter across previous 
updates, and calculates a momentum based on this gradient. 



One Cycle Policy

Starts with a very low learning rate - this is to initialize the activations. A high 
learning rate on randomly initialized activations would risk the model diverging 
rather than converging. 

Large learning rates are required to allow the model to train quickly, but also to 
jump out of local minima and traverse large saddles in the loss landscape. 

Small learning rates are required to allow the fine tuning of parameters to reach 
the very bottom of minima in the loss landscape.  



Discussion

Domain transfer?

Pretrained models vs. from scratch?


