Vision Based Pendulum Control using Diffusion Policy

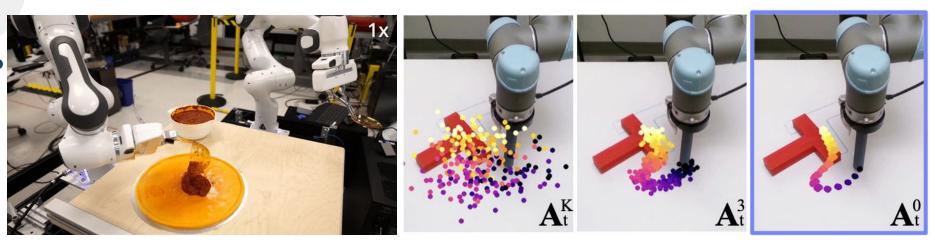
ES158 Final Project: Aneesh Muppidi

Image to control inverted pendulum swing up

r = -(theta² + 0.1 * theta_dt² + 0.001 * torque²)

Action Torque	1d, -2 to 2
Observation Shape	(3,) + rgb
Observation High	[1. 1. 8.]
Observation Low	[-118.]
Import	gym.make("Pendulum-v1 ")

Diffusion Policy in Robotics

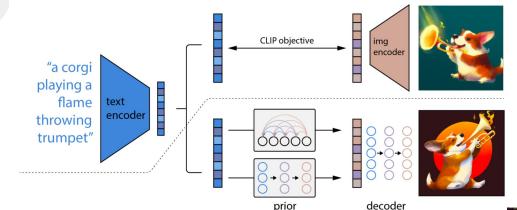


- High Dimensional Action Space
- Multiple Trajectories
- **Closed Loop Action Sequences**
- Very complicated tasks

Does a Diffusion Policy work for simple, one dimensional action space, unimodal, nonlinear control problems?

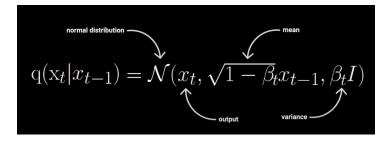
Intuition: yes!

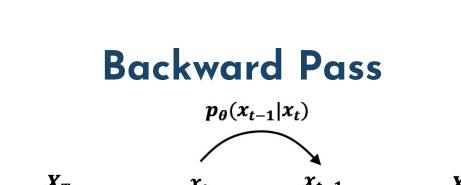
What is Diffusion ??

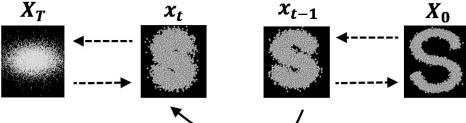


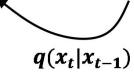
It can be used for a lot more than just image generation

How does Diffusion Work? Forward Pass





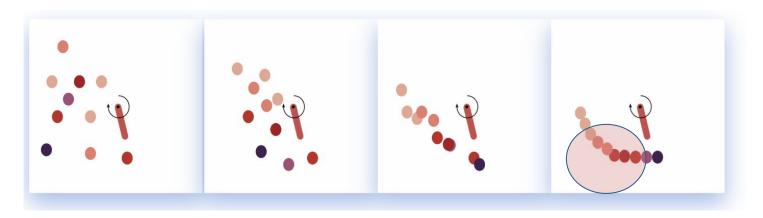




←----- Forward Diffusion
·----→ Reverse Diffusion

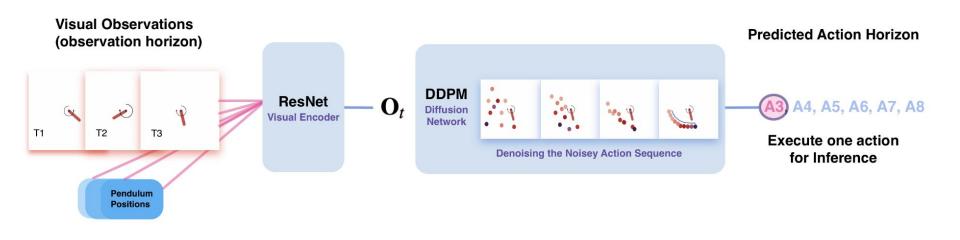
 $p_{ heta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; oldsymbol{\mu}_{ heta}(\mathbf{x}_t, t), \Sigma_{ heta}(\mathbf{x}_t, t))$

How do we adapt this for control? We just denoise actions instead!



 $\mathbf{x}^{k-1} = \boldsymbol{\alpha} (\mathbf{x}^k - \gamma \boldsymbol{\varepsilon}_{\boldsymbol{\theta}} (\mathbf{x}^k, k) + \mathcal{N} (0, \sigma^2 I))$

The Architecture



Training - Dataset

Solved DQN

500 Episodes, 100 steps each Observation Horizon: 8 Prediction Horizon: 16 Action Horizon: 2

Results (best model from 450 runs)

Model 1 (θ - not given, θ dot not given)

Model 2 (θ - given, θ dot not given)

Is diffusion a good policy for simple, nonlinear control problems?

Computational Expense

Fine Tuning

Does not converge easily

If I had more time, I would test...

Transformer Model (more robust for velocity)

Other control problems

Different Diffusion Models

Other ways to concatenate observations

