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Image to control inverted pendulum swing up
° r = -(theta”2 + 0.1 * theta_dt*2 + 0.001 * torque*2) ‘

Action Torque

Observation Shape

\ Observation High
Observation Low

Import gym.make ("Pendulum-vl

")
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Diffusion Policy in Robotics
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High Dimensional Action Space
Multiple Trajectories

Closed Loop Action Sequences
Very complicated tasks
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: Does a Diffusion Policy work .
for simple, one dimensional
action space, unimodal,
nonlinear control problems?

Intuition: yes!
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. What is Diffusion ??
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iffusion Work?
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How does

Forward Pass
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Backward Pass

Po(X¢—1]x¢)

q(x¢|x-1)

G ————— Forward Diffusion

------ -» Reverse Diffusion

pO(xt—l‘xt) :N xt laxta Eﬁ(xta ))
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How do we adapt this for control?

We just denoise actions instead!

X1 = a(x* — yep (x*,k) + 4 (0,067%1))
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The Architecture

Visual Observations
(observation horizon)

Predicted Action Horizon

DDPM
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Execute one action

J— - Denoising the Noisey Action Sequence for Inference
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Training - Dataset
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Solved DQN
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Model Training

Episodes, steps each
Observation Horizon:
Prediction Horizon:
Action Horizon:
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Results (best model from 450 runs)
Model 1 ( , Model 2 ( )
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Is diffusion a good policy for simple,
. nonlinear control problems? ‘

Computational Expense
Fine Tuning

Does not converge easily
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If | had more time, | would test...

Transformer Model (more
robust for velocity)

Other control problems
Different Diffusion Models

Other ways to concatenate
observations
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Why not? (open question)
Stability/Target
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