
Remove Job from Promise
Resolve Functions
Making Promise Adoption Faster

● A logs in tick 0.
● B logs in tick 1.
● C logs in tick 2.
● When is D logged?

How many ticks?

Promise constructor takes an executor
function.

Executor receives resolve and
reject functions. I’ll refer to
resolve as the “executor’s resolve”.

Executor’s resolve is a closure that
performs “Promise Resolve Functions”
steps.

If inner is thenable, we adopt its state
to settle the outer promise.

Context

Settles a new promise with the result
of the onFul callback using executor’s
resolve.

The onFul call **must** happen in a
new tick, according to Promises A+
spec. This guarantees that the onFul
callbacks don’t release Zalgo.

https://blog.izs.me/2013/08/designing-apis-fo
r-asynchrony/

Promise.p.then

When that promise.then(...) fires its
callback:

Returning an inner promise immediately
resolves the outer with the result (inner). We
need to adopt inner’s state to settle outer.

To do that, we wait 1 tick before calling
inner.then(settleOuter).

We wait 1 tick before calling
settleOuter([[Res]]), which fulfills the
outer promise.

Now that outer is settled, we wait 1 tick before
calling log([[Res]]).

It requires 2 ticks to adopt, 1 tick to fire
chained thens.

So resolving a
promise with a
promise?

● A logs in tick 0.
● B logs in tick 1.
● C logs in tick 2.
● D logs in tick 5.

It requires 2 ticks to adopt, 1 tick to fire
chained thens.

How many ticks!?

Promise adoption is everywhere. Even
async functions.

The function body’s Completion value
is passed to the executor’s resolve.

● A logs in tick 1.
● B logs in tick 2.
● C logs in tick 3.
● D logs in tick 2.

It’s faster to await a promise then
return its value than it is to return the
promise directly.

(We fixed await to fast-path native
promises in #1250)

Why does this
matter?

https://github.com/tc39/ecma262/pull/1250

Remove the tick before invoking
then.call(...). Thenable adoption
will take 1 tick instead of 2.

Remember, then can’t invoke onFul
immediately unless we want to release
Zalgo.

But there’s no need to wait before
calling the thenable’s then. In fact,
Promises A+ says you’re supposed to
call then immediately.

Proposal

D logs in tick 4 instead of 5.

Everything else is the same:

● A logs in tick 0.
● B logs in tick 1.
● C logs in tick 2.

Now it takes 1 tick to adopt, 1 tick to
fire chained then.

What’ll change?

C logs in tick 2 instead of 3.

Everything else is the same:

● A logs in tick 1.
● B logs in tick 2.
● D logs in tick 2.

Now it takes 1 tick to adopt, 1 tick to
fire chained then.

What’ll change?

What’ll change?

● B logs in tick 0 instead of 1.
● C logs in tick 2 instead of 3.

Everything else is the same:

● A logs in tick 0.

Now then is called immediately, it
takes 1 tick to adopt, 1 tick to fire
chained then.

Fast path %Promise.p.then%

Alternative Proposal

If the thenable’s then is
Promise.p.then, then just call it.

Promise.p.then does sync access
val[Symbol.species], but
otherwise unobservable. Well, besides
the adoption taking 1 less tick.

Non-native promise thenables are
likely rare at this point?

Fast Path

Why did we wait before?

Promise.resolve “casts” a value to
a promise.

If value is not already a promise (has
internal slot), then we run the
executor’s resolve to create a new
promise.

Promise.resolve

Apparent design was to safely cast
values to a known good promise
without running untrusted code during
this tick.

But, .constructor is sync accessed.
And .then is not guaranteed.

Promise.resolve

When the object doesn’t have a
[[PromiseState]], .then is sync
accessed (inside Promise Resolve
Functions).

Promise.resolve

Discussion?

Consensus?

If a callback can be called sync, then it
must always be called sync.

If it can be called async, then it must
always be called async.

Anything else releases Zalgo.

https://blog.izs.me/2013/08/designing-apis-fo
r-asynchrony/

Zalgo

