Remove Job from Promise
Resolve Functions

Making Promise Adoption Faster

1 // Pretend this increments every tick.
2 let ticks = @;
_ 3 new Promise((res) => {
How many ticks? 4 console.log('A', ticks);
5 res('A');
logs in tick 0. 6
logs in tick 1.
logs in tick 2. T }).then(() =» {
When is D logged? 8 console.log('B', ticks);
9 return 'B';
10

11 }).then(() => {

12 console.log('C', ticks);

13 return Promise.resolve('C');
14

15 }).then(() =» {

16 console.log('D', ticks);

17 });

1 const outer = new Promise(executor);
2 function executor(resolve, reject) {
3 // resolve is PromiseResolveFns

Context

4 }
%)
fProm.ise constructor takes an executor 6 function PromiseResolvans(inner) {
unction.
7 if (typeof inner !== 'object')
Executor receives chle 8 return FulfillPromise(inner);
functions. I'll refer to 9
as the “executor’s resolve”.
10 const then = inner.then;
Executor’s resolve is a closure that 11 if (typeof then !== 'function)
performs “Promise Resolve Functions”)))
ste 12 return FulfillPromise(inner);
ps.
13
If is thenable, wg adopt its state 14 NEXT_TICK (() = {
to settle the outer promise. _
15 then.call(inner, settleQuter);
16 k)

17)

Settles a new promise with the result
of the callback using executor’s
resolve.

The call **must** happenin a

new tick, according to Promises A+
spec. This guarantees that the
callbacks don't release Zalgo.

https://blog.izs.me/2013/08/designing-apis-fo
r-asynchrony/

1 // Glossing over pending and rejected
2 // states, but they're not important
3 // for this discussion.

4 Promise.p.then = function(onFul) {

5

O© 00 3 O

10
44
12
13
14
15
16
17

ks

const C = this[Symbol.species];

// Pretend this promise is fulfilled
// already with a value.
return new C(res =» {
NEXT TICK(() => ¢
res(onFul ([[PromiseResult]]));
2
1)

So resolving a
promise with a
promise?

When that fires its
callback:

Returning an inner promise immediately
resolves the outer with the result (). We
need to adopt 's state to settle

To do that, we wait 1 tick before calling

We wait 1 tick before calling
, which fulfills the
outer promise.

Now that outer is settled, we wait 1 tick before
calling

It requires 2 ticks to adopt, 1 tick to fire
chained thens.

O 00 9 O O i W N =

10

const outer = promise.then(() => {
const inner = Promise.resolve('A');
return inner;

il

outer.then(log);

// promise.then(retInner) becomes:

new Promise(

resOuter =»> resOuter(inner));

// resOuter(inner) becomes:
NEXT_TICK(

() => inner.then(settleOuter));

// inner.then(settleOuter) becomes:
NEXT_TICK(

() => settleOuter(inner.[[Res]]));
// outer.then(log) becomes:
NEXT_TICK(

() => log(outer.[[Res]]));

1 // Pretend this increments every tick.
2 let ticks = @;
_ 3 new Promise((res) => {
How many ticks!? 4 console.log('A', ticks);
5 res('A');
logs in tick 0. 6
logs in tick 1.
logs in tick 2. T }).then(() =» {
logs in tick 5. 8 console.log('B', ticks);
It requires 2 ticks to adopt, 1 tick to fire 9 return ‘B’ '
chained thens. 10

11 }).then(() => {

12 console.log('C', ticks);

13 return Promise.resolve('C');
14

15 }).then(() =» {

16 console.log('D', ticks);

17 });

Why does this
matter?

Promise adoption is everywhere. Even
async functions.

The function body’s Completion value
is passed to the executor’s resolve.

logs in tick 1.
logs in tick 2.
logs in tick 3.
logs in tick 2.

It's faster to await a promise then
return its value than it is to return the
promise directly.

(We fixed await to fast-path native
promises in #1250)

O 00 9 O O b W N =

10

let ticks = 9Q;

// Return Direct Primitive

(async () => 1)()
.then(() => console.log('A', ticks));

// Return Awaited Primitive
(async () =» await 1)()
.then(() => console.log('B', ticks));

// Return Direct Promise
(async () => Promise.resolve(1))()
.then(() => console.log('C', ticks));

// Return Awaited Promise
(async() => await Promise.resolve(1))()
.then(() => console.log('D', ticks));

https://github.com/tc39/ecma262/pull/1250

Proposal

Remove the tick before invoking
. Thenable adoption
will take 1 tick instead of 2.

Rememober, can't invoke
immediately unless we want to release
Zalgo.

But there's no need to wait before
calling the thenable’s . In fact,
Promises A+ says you're supposed to
call immediately.

function PromiseResolveFns(inner) {
if (typeof inner !== 'object')
return FulfillPromise(inner);

const then = inner.then;
if (typeof then !== 'function')
return FulfillPromise(inner);

// No need to wait.
then.call(inner, settleOuter)

What'll change?

logs in tick 4 instead of 5.
Everything else is the same:

° logs in tick O.

° logs in tick 1.

° logs in tick 2.

Now it takes 1 tick to adopt, 1 tick to
fire chained then.

1 // Pretend this increments every tick.
2 let ticks = @;

3 new Promise((res) => {

4 console.log('A', ticks);

5 res('A');

6

T }).then(() =>» {

8 console.log('B', ticks);

9 return ‘B’
10

11 }).then(() => {

12 console.log('C', ticks);

13 return Promise.resolve('C');
14

15 }).then(() =» {

16 console.log('D', ticks);

17 });

1 let ticks = 9;
2
3 // Return Direct Primitive
)
What'll change? 4 (aEdme (5 = 4309
5 .then(() => console.log('A', ticks));
logs in tick 2 instead of 3. 6
Everything else is the same: T // Return Awaited Primitive
8 (async () => await 1)()
° logs in tick 1. _ QR : ;
s logs in tick 2. 9 .then(() => console.log('B', ticks));
o logs in tick 2. 10

11 // Return Direct Promise
12 (async () => Promise.resolve(1))()
13 .then(() => console.log('C', ticks));

Now it takes 1 tick to adopt, 1 tick to
fire chained then.

15 // Return Awaited Promise
16 (async() => await Promise.resolve(1))()
17 .then(() => console.log('D', ticks));

What'll change?

° logs in tick 0 instead of 1.
° logs in tick 2 instead of 3.

Everything else is the same:
° logs in tick O.
Now is called immediately, it

takes 1 tick to adopt, 1 tick to fire
chained then.

1 let ticks = 0©;

2

3 Promise.resolve({

4 get then() {

5 console.log('A', ticks);
6

7 return (res) => {

8 console.log('B', ticks);
9 NEXT_TICK(() => {
10 res('B');
11 1)
12 1
13 }.

14 }).then(() => {

15 console.log('C', ticks):
16 });

17

Alternative Proposal
Fast path

1 function PromiseResolveFns(val) {
2 if (val === [[Promise]])
3 return RejectPromise(new Error);
Fast Path 4 if (typeof val !== 'object')
5 return FulfillPromise(val);
If the thenable’s is 6 const then = val.then;
, then just call it.))
7 if (typeof then !== 'function')
does sync access 8 return FulfillPromise(val);
, but
otherwise unobservable. Well, besides 9))
the adoption taking 1 less tick. 10 if (then === %Promise.p.then%) {
11 then.call(val, PromiseResolveFns);
Non-native promise thenables are _
likely rare at this point? 12 return;
13 }
14 NEXT_TICK(() => {
15 then.call(val, PromiseResolveFns);
16 });

17 }

Why did we wait before?

“casts” a value to
a promise.

If is not already a promise (has
internal slot), then we run the

executor’s resolve to create a new
promise.

O 00 9 O O » W N =

K QR G T T G -
<N O Ol WO -~

Promise.resolve = function(value) {

const C = thls!
if (!isFunction(C)) throw new Error;

if (value.[[PromiseState]]) {
const vC = value.constructor;
if (vC === ¢) return value;

return new C(res => {
res(value);

¥);

1 const p = new Promise(r => r(1));
2 Object.defineProperty(

3 p,

& ‘constructor’ ,

5
Apparent design was to safely cast 6 get() {
values to a known good promise , X
without running untrusted code during 7 al ert(constructor) /
this tick. 8 return Promise;
But, is sync accessed. ° } :
And is not guaranteed. 10 } ’

A4S

12 p.then = () => { alert('gotcha') };
13

14

15 Promise.resolve(p).then(() => {});
16 // constructor

17 // gotcha

When the object doesn’t have a

is sync
accessed (inside Promise Resolve
Functions).

O 00 9 O O » W N =

A A A A A
B WO N =~

15
16
17

const val = {
get then() {
alert('then');
return (res) => {
res(1);

¥

Promise.resolve(val).then(() => {});
// then

Discussion?

Consensus?

1 function zalgoTest(promise) {
2 let sync = true;
3 promise.then(() => {
Za|gO 4 console.assert(sync === false);
5), O =
If a callback can be called sync, then it 6 console.assert(sync === false);
must always be called sync. '
T });
If it can be called async, then it must 8 SYNe = fal se;
always be called async. 9 }
Anything else releases Zalgo. 10
11 // If then's onFul/onRej params _can_

A
(NS

// be called async, they must always
// be called async.

zalgoTest(new Promise(setTimeout));
zalgoTest(Promise.resolve(1));
zalgoTest(Promise.reject(1));

RGN
o1 & W

https://blog.izs.me/2013/08/designing-apis-fo
r-asynchrony/

= S
N O

