@.0

Node-internalg]
V8 & GC

"

Hello!

Vincent Vallet

Node]s & performance evangelist

@Vince_Vallet

Introduction

Garbage Collector What is this ?

(rood point : With NodelJs, no need to
manage memory |

=> Garbage Collector (GC) = take care of
memory |

9

Type of GC

Type

15

Description
Scavenge (Minor GC)
Mark Sweep compact (Major GC)
Incremental marking / Lazy sweeping
Weak/Phantom callback processing

All

Stop the world Concurrent

GC cycle GC cycle GC cycle
N N N . ~ I
N N //
]]
Incremental Parallel + concurrent
GC cycle GC cycle P GC cycle GC cycle

I—H (= \ ‘,
BRI

Dead or Alive 7/

When an object is dead (not reachable) GC
can remove it !

Cycle 1 Cycle N

Global / window

®
. ---Alive / - - --Dead
/ /
@

¢
® @

Time

Generations

»‘
First GC cycle Second GC cycle O

9 4

9

Ve can reclaim mem

king on t

11

Spaces

V8 uses spaces for a better
memory organization !

12

Spaces

Type
New-space

Old space

Large space

Code space

Map space

Description
Most objects are allocated here.

Moved here after surviving in new-space for a while.

This space contains objects which are larger than the size
limits of other spaces. Large objects are never moved by
the garbage collector.

Code objects, which contain JITed instructions, are
allocated here.

Cells, PropertyCells, and Maps

Spaces & pages

9

New space Old space

A A
4 \ 4 \

——
1 Mb

13

Memory
Leak

Nightmare !

80000000

70000000

60000000

50000000

40000000

Used Memory [byte]

30000000

20000000

10000000

Node.js Memory Consumption over Time

il

= 155 HeapTotal

HeapUsed =+cce*- Linear (HeapUsed)

15

Used Memory [byte]

120000000

100000000

80000000

60000000

40000000

20000000

0

Node.js Memory Consumption over Time

MEMORY L

o,

RSS

Heaplotal

!eapused

VERYWHE

*Linear (HeapUsed)

Code Segment

18

Algorithm

Scavenge vs Mark / Sweep / Compact
White -> gray -> back ...

19

Scavenge : Minor GC algorithm.
[t’s used only in new space.

New space

288
288
2E@8

288
288
2E@8

Major GC

n‘} “

22

Mark : Recursive procedure of marking
reachable objects |

V& use the white/gray/black marking
system.

White / Gray / Black

Not yet been discovered Discovered Discovered and all of
its neighbors also.

24

Define root nodes + mark them as discovered !

‘ Root ‘ Root

A e N

o o //.

2D

Direct neighbors discovery

‘ Root ‘ Root
/\ . oot /\
o @ o @

o o //0

Mark node in black if they are discovered and all
their neighbors also.

Root Root

N I

5 i)Root \
| ¢ o
e

21

Mark node in black if they are discovered and all
their neighbors also.

Root Root

N N

5 i)Root \
| ¢ o
e/

28

Root

Mark node in black if they are discovered and all
their neighbors also.

Root

Root

29

Root

Mark node in black if they are discovered and all
their neighbors also.

Root

Root

30

Root

Root

Root

NO SIGNAL What about

non-reachable

31

Some nodes are unreachable !

W
W

Some nodes stay in white, they will be removed by
sweep phase.

Root Root

Root

34

Sweep : Remove all unused (white)
objects.

Can be done during another GC pause |

35

Compact: moving all marked — and
thus alive — objects to the beginning of
the memory region.

Sweep In action

KA

Before

N UENS

After

36

L/
E>. Compact in action
Before Swecp | R S e
sier sweep | 0 O S N

compect I

37

38

Reduce marking pause

Parallel / concurrent

Stop the world

(3
)
GC JS

Main thread s > R

39

40

Incremental marking :

garbage collector splits up the marking
work into smaller chunks

Incremental marking

'.
@
GC JS GC JS GC JS GC JS

Maln thread > > > > = =

Y
Y

41

e

Lazy sweeping .
Sweep pages on an as-needed basis
until all pages have been swept

K

Concurrent
GC JS
Mam thread —
Worker o e
Worker o

43

K

Parallel
JS
Mam thread —_—
GC
Worker N
GC
Worker N

L4

All together

Start Markin Finish
marking JS step : JS marking
Main thread > > » >
Concurrent marking i
Worker -'-‘-:__-.' s S
Concurrent marking .
Worker ST RURUTUURRRUR. > NG

45

46

Monitoring tools

Modules : v8, gc stats
Options : --trace_gc

: - Deme - A

Module v&

The v8 module exposes APIs that are specific to the
version of V8 built into the Node.js binary

- v8.getHeapSpaceStatistics() total heap size: 73)
total heap size executable
total physical size: 7
total available siz

- v8.getHeapStatistics()

used heap size:

heap size limit:

malloced memory: >384,

peak malloced memory: 1127496,
does zap garbage: 0

C Stats

Exposes stats about V8 GC after it has been executed.

var gc = (require('gc-stats'))();

gc.on('stats', function (stats) {

console.log('GC happened', stats);

1)

GC happened {
startTime: 9426055813976,
endTime: 9426057735390,
pause: 1921414,
pauseMS: 1,
gctype: 1,
before: {

¥
after: {

s
diff: {

}

S
.. Demo - > ,
- ——tr-ace_gc , -\ "\ 4 S
- ‘. o v '
- -
. \ ” . . "% - \ ; \ . / % @

9

51

V& options

--trace_gc : print one trace line following each garbage collection
--trace_gc_verbose : print details following each garbage collection

--trace_gc_nvp : print one detailed trace line in name=value format
after each garbage collection

--expose_gc : expose gc extension

PID

Start GC type

29347: 0x3c18b10]
X3cl

[29347 ex3c18b1e]
'[29347:0x3c18b16]
[29347:0x3c18b10]
[29347:0x3c18b10]
[29347:0x3c18b10]
[29347:0x3c18b10]
[29347:0x3c18b10]
[29347:0x3c18b10]
[29347:0x3c18b10]
[29347:0x3c18b10]

[29347:0x3c18b10]
[29347:0x3c18b10]
[29347:0x3c18b10]

2254

| ms |Scavenge|
ms: Scavenge

2274
2298
PACHR:
2344
2360
2378
2393
2414
2430

2470 ms
2510 ms
e since start of marking 96 ms

2558
2584

Reason of GC

52

ms: Scavenge
ms: Scavenge
ms: Scavenge
ms: Scavenge
ms: Scavenge
ms: Scavenge
ms: Scavenge
ms: Scavenge

ms: Scavenge

ms:

114.8
122.4
128.3
137.0
143.0
151.7
157.6
166.3
172.3
180.9

(144.
(152.
(159.
(168.
(175.
(184.
(191.
(201.
(208.
(217.
: Scavenge 187.0 (225.
:195.0 (234.3) -> 6

d F-uncremental
2542 ms: Scavenge 74.2 (10

avenge| 88.8 (116.3)

3) ->
8) ->
3) ->
8) ->
3) ->
8) ->
3) ->
3) ->
3) ->
8) ->
3) ->

marking

113.0
121.9
127.7
136.6
142.3
151.3
- 4% |
165.8
171.7
180.3
186.2

GC pause / time spent in
external memory

.8)
.3)
.8)
.3)
.8)
.3)
.3)
.3)
.8)
.3)
.3)

MB
MB

MB, 22.6 /
MB, 15.4 /

MB,
MB,
MB,
MB,
MB,
MB,
MB,

Size of all objects

22.2
13.2
17.2
12.4
16.4
11.1
14.6

Ty iy gy gy Py Sy iy
ollcoNoNoNoNoNoNoNoNol

-> 81.8 (116.3) MB, 9.7 / 6. 0 ms
-> 88.1 (125.3) MB,| 23.0 / 0.0 ms

(ool No Moo NoNo RN

,|15.5 / 0.0 ms I
S S .0 ms

ms
ms
ms
ms
ms
ms
ms
ms
ms

allocation
allocation
allocation
allocation
allocation
allocation
allocation
allocation
allocation
allocation
allocation

failur
failur
failur
failur
failur
failur
failur
failur
failur
failur
failur
in 188

allocation failure

allocation failure

53

| hanks!

Any questions?

You can find me at:

< @Vince_Vallet
<& wallet77@gmail.com

5.4

Credits

V8 GC overview
Concurrent marking
GC algorithm

V8 options

OO0

http://jayconrod.com/posts/55/a-tour-of-v8-garbage-collection
https://v8project.blogspot.com/2018/06/concurrent-marking.html
https://plumbr.io/handbook/garbage-collection-algorithms
https://gist.github.com/listochkin/10973974

