
[Node-internals]
V8 & GC

Hello!
Vincent Vallet
NodeJs & performance evangelist

@Vince_Vallet

2

Introduction
Garbage Collector …. What is this ?

1

“
Good point : With NodeJS, no need to
manage memory !

=> Garbage Collector (GC) = take care of
memory !

4

Type of GC

Type Description

1 Scavenge (Minor GC)

2 Mark Sweep compact (Major GC)

4 Incremental marking / Lazy sweeping

8 Weak/Phantom callback processing

15 All
5

Stop the world

Incremental

Concurrent

Parallel + concurrent

GC cycle

GC cycle GC cycle

GC cycle GC cycle

GC cycle GC cycle

6

Dead or Alive ?
When an object is dead (not reachable) GC
can remove it !

7

Cycle 1 Cycle N

Time

Global / window

Alive Dead

8

Generations

Nursery New Old

9

First GC cycle Second GC cycle

10

Spaces
V8 uses spaces for a better
memory organization !

11

Spaces
Type Description

New-space Most objects are allocated here.

Old space Moved here after surviving in new-space for a while.

Large space
This space contains objects which are larger than the size
limits of other spaces. Large objects are never moved by
the garbage collector.

Code space Code objects, which contain JITed instructions, are
allocated here.

Map space Cells, PropertyCells, and Maps
12

Spaces & pages

New space Old space

Page 1 Page 2

Page 3

Page 1 Page 2

Page 3 Page 4
1 Mb

13

Memory
Leak
Nightmare !

14

15

16

Algorithm
Scavenge vs Mark / Sweep / Compact
White -> gray -> back ...

2

18

“
Scavenge : Minor GC algorithm.

It’s used only in new space.

19

to space

from space

1 2 3

to space

from space

1 2 3

to space

from space

to space

from space

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

4 5 9

6

7 8

New space

Old space

20

Major GC

Mark Sweep Compact

21

“
Mark : Recursive procedure of marking
reachable objects !

V8 use the white/gray/black marking
system.

22

10

White / Gray / Black

00 11

23

Not yet been discovered Discovered Discovered and all of
its neighbors also.

Root Root

Define root nodes + mark them as discovered !

Root

24

Root Root

Direct neighbors discovery

Root

25

Root Root

Mark node in black if they are discovered and all
their neighbors also.

Root

26

Root Root

Mark node in black if they are discovered and all
their neighbors also.

Root

27

Root Root

Mark node in black if they are discovered and all
their neighbors also.

Root

28

Root Root

Mark node in black if they are discovered and all
their neighbors also.

Root

29

Root Root

All reachable nodes are black : mark phase is done !!!!!!

Root

30

What about
non-reachable ?

31

Root Root

Some nodes are unreachable !

Root

32

Root Root

Some nodes stay in white, they will be removed by
sweep phase.

Root

33

“
Sweep : Remove all unused (white)
objects.

Can be done during another GC pause !

34

“
Compact : moving all marked – and
thus alive – objects to the beginning of
the memory region.

35

Sweep in action

Before

After

Sweep phase

36

Compact in action

Before Sweep

After Sweep

After
Compact

37

Reduce marking pause
Parallel / concurrent

3

38

Stop the world

Main thread
GC JS

39

“
Incremental marking :

garbage collector splits up the marking
work into smaller chunks

40

Incremental marking

Main thread
GC JS GC JS GC JS GC JS

41

“
Lazy sweeping :

sweep pages on an as-needed basis
until all pages have been swept

42

Concurrent

Main thread
GC JS

Worker

Worker

43

Parallel

Main thread
JS

Worker

Worker

GC

GC

44

All together

Main thread

Start
marking

Worker

Worker

JS Marking
step

Concurrent marking

Concurrent marking

JS Finish
marking

45

Monitoring tools
Modules : v8, gc stats
Options : --trace_gc

4

46

Demo
Module : V8

47

Module v8

The v8 module exposes APIs that are specific to the
version of V8 built into the Node.js binary

{
 total_heap_size: 7326976,
 total_heap_size_executable: 4194304,
 total_physical_size: 7326976,
 total_available_size: 1152656,
 used_heap_size: 3476208,
 heap_size_limit: 1535115264,
 malloced_memory: 16384,
 peak_malloced_memory: 1127496,
 does_zap_garbage: 0
}

48

- v8.getHeapSpaceStatistics()
- v8.getHeapStatistics()

Gc Stats

Exposes stats about V8 GC after it has been executed.

49

var gc = (require('gc-stats'))();

gc.on('stats', function (stats) {

 console.log('GC happened', stats);

});

GC happened {

 startTime: 9426055813976,

 endTime: 9426057735390,

 pause: 1921414,

 pauseMS: 1,

 gctype: 1,

 before: {

 ...

 },

 after: {

 ...

 },

 diff: {

 ...

 }

}

Demo
--trace_gc

50

V8 options

--trace_gc : print one trace line following each garbage collection
--trace_gc_verbose : print details following each garbage collection
--trace_gc_nvp : print one detailed trace line in name=value format
after each garbage collection
--expose_gc : expose gc extension

51

GC typePID Start
GC pause / time spent in
external memory

Size of all objectsReason of GC

52

Thanks!
Any questions?
You can find me at:
◇ @Vince_Vallet
◇ wallet77@gmail.com

53

Credits
◇ V8 GC overview
◇ Concurrent marking
◇ GC algorithm
◇ V8 options

54

http://jayconrod.com/posts/55/a-tour-of-v8-garbage-collection
https://v8project.blogspot.com/2018/06/concurrent-marking.html
https://plumbr.io/handbook/garbage-collection-algorithms
https://gist.github.com/listochkin/10973974

