NanoCommunication-based Impermeable Region Mapping for Oil Reservoir Exploration
Liuyi Jin†, Lihua Zuo ‡ , Zhipei Yan†, Radu Stoleru†�
†Department of Computer Science & Engineering, Texas A&M University
‡ Department of Mathematics, Texas A&M University-Kingsville
NanoCom 2019
lenss.cse.tamu.edu
Outline
2
lenss.cse.tamu.edu
Motivation
Figure source: BP energy outlook 2019
3
lenss.cse.tamu.edu
Motivation
Figure source: BP energy outlook 2019
4
lenss.cse.tamu.edu
Motivation
5
lenss.cse.tamu.edu
State of the Art
6
lenss.cse.tamu.edu
Our Contributions
7
lenss.cse.tamu.edu
Problem Formulation
8
lenss.cse.tamu.edu
Problem Formulation
(Akkas GLOBECOM’10, Terahertz channel modeling of underground sensor networks in oil reservoirs)
9
lenss.cse.tamu.edu
Problem Formulation
Impermeable Area Geometry Characterization Problem
Pick the “tightest” streamline loop
There are 2 challenges to overcome:
10
lenss.cse.tamu.edu
Problem Formulation
Impermeable Area Geometry Characterization Problem
11
lenss.cse.tamu.edu
Problem Formulation
Impermeable Area Geometry Characterization Problem
12
lenss.cse.tamu.edu
Problem Formulation
Impermeable Area Geometry Characterization Problem
13
lenss.cse.tamu.edu
Proposed Solution
14
lenss.cse.tamu.edu
Performance Evaluation
Algorithm 1 decision of which well-pair to include contributes to a more and more accurate mapping of the impermeable square area (from (b) through (f))
15
lenss.cse.tamu.edu
Performance Evaluation
16
lenss.cse.tamu.edu
Performance Evaluation
17
lenss.cse.tamu.edu
Performance Evaluation
18
lenss.cse.tamu.edu
Conclusions
19
lenss.cse.tamu.edu
Future Work
20
lenss.cse.tamu.edu
Questions?
21
lenss.cse.tamu.edu
Proposed Solution
Streamline Simulation
The simulator results are in macroscale. To cope with this, we discretized the real streamlines with approximated line segments with nanoscale length
22
lenss.cse.tamu.edu