Inference for Two-way tables (chi squared test) Randomization

Prof. Dr. Jan Kirenz

Sell a used iPod - get as much money as possible

You participate in an experiment: sell a used iPod (with defects)

You get 5\% cut of the sale on top of \$10 for participating

$$
(n=219)
$$

You get one of three questions from a potential buyer:

- General: What can you tell me about it?
- Positive Assumption: It does not have any problems, does it?
- Negative Assumption: What problems does it have?

| Question | Disclose
 problem | Hide
 problem | Total |
| :--- | ---: | ---: | ---: |$|$| General | 2 | 71 |
| :--- | ---: | ---: |

What is the actual disclosure per question?

If the questions makes no difference $\left(\mathbf{H}_{\mathbf{0}}\right)$:

We would expect that $\mathbf{2 7 . 8 5 \%}$ of sellers will disclose the problem (regardless of the question)

Question	Disclose problem			Total
What is the expected disclosure				
per question?				

Question	Disclose problem	Hide problem	Total	What is the expected amount of participants who hide the problem (per question)?
General	2	71	$\mathbf{7 3}$	
Positive	$20.33)$	(52.67)		
assumption	23	50	$\mathbf{7 3}$	
Negative	(20.33)	(52.67)		
assumption	36	37	$\mathbf{7 3}$	
Total	$60.33)$	$\mathbf{(5 2 . 6 7)}$		

$$
\begin{array}{ll}
61 / 219= & 158 / 219= \\
27.85 \% & 72.15 \%
\end{array}
$$

Computing expected counts in a two-way table.

To calculate the expected count for the $i^{t h}$ row and $j^{\text {th }}$ column, compute

Expected Count ${ }_{\text {row } i, \text { col } j}=\frac{(\text { row } i \text { total }) \times(\text { column } j \text { total })}{\text { table total }}$

Question	Disclose problem	Hide problem	Total
General	2	71	73
(20.33)	(52.67)		
Positive assumption (20.33)	(52.67)	73	
Negative	36	37	73
assumption	(20.33)	(52.67)	
Total			

General formula $\quad\left(\right.$ observed count - expected count) ${ }^{2}$ expected count

Row 1, Col $1 \quad \frac{(2-20.33)^{2}}{20.33}=16.53$
Row 2, Col 1

$$
\frac{(23-20.33)^{2}}{20.33}=0.35
$$

\vdots
Row 2, Col 3

$$
\frac{(37-52.67)^{2}}{52.67}=4.66
$$

Adding the computed value for each cell gives the chi-squared test statistic X^{2} :

$$
X^{2}=16.53+0.35+\cdots+4.66=40.13
$$

Randomization

Variability of the statistic

Null hypothesis:

individuals will disclose or hide the problems regardless of the question they are given

We can randomize the data by reassigning the $\mathbf{6 1}$ disclosed problems and $\mathbf{1 5 8}$ hidden problems to the three groups at random

Question	Disclose problem	Hide problem	Total
General			73
Positive assumption			73
Negative assumption	61	158	219
Total			73

| Question | Disclose
 problem | Hide
 problem | Total |
| :--- | ---: | ---: | ---: |$|$| 73 | |
| :--- | ---: |
| General | 29 |
| Positive
 assumption | 15 |
| Negative
 assumption | 58 |
| Total | 63 |

General formula
$\frac{\left(\text { observed count }- \text { expected count) }{ }^{2}\right.}{\text { expected count }}$
Row 1, Col 1

$$
\frac{(29-20.33)^{2}}{20.33}=3.7
$$

Row 2, Col 1

Row 3, Col 2

$$
\frac{(56-52.67)^{2}}{52.67}=0.211
$$

Adding the computed value for each cell gives the chi-squared test statistic X^{2} :

$$
X^{2}=3.7+1.4+\cdots+0.211=8
$$

$$
\frac{(15-20.33)^{2}}{20.33}=1.4
$$

\vdots
!

Shows a possible randomization of the observed data under the condition that the null hypothesis is true

1,000 chi-squared statistics generated under the null

Chi-squared statistics assuming a true null hypothesis

We can see that the observed value is so far from the null statistics that the simulated \mathbf{p}-value is zero.

Note that with a chi-squared test:

- We only know that the two variables (question_class and response) are related (i.e., not independent)
- We are not able to claim which type of question causes which type of response.

Resources

The content of this presentation is mainly based on the excellent book "Introduction to Modern Statistics" by Mine Çetinkaya-Rundel and Johanna Hardin (2021).

The online version of the book can be accessed for free:
https://openintro-ims.netlify.app/index.html

