Inference for Two-way tables (chi squared test)

Randomization

Sell a used iPod - get as much money as possible

You participate in an experiment: sell a used iPod (with defects)

You get 5% cut of the sale on top of \$10 for participating

(n = 219)

You get one of three questions from a potential buyer:

- General: What can you tell me about it?
- Positive Assumption: It does not have any problems, does it?
- Negative Assumption: What problems does it have?

	Disclose	Hide	
Question	problem	problem	Total
General	2	71	73
Positive assumption	23	50	73
Negative assumption	36	37	73
Total	61	158	219

What is the **actual disclosure** per question?

If the questions makes no difference $(\mathbf{H}_{\mathbf{n}})$:

We would expect that **27.85%** of sellers will **disclose** the problem (regardless of the question)

Question	Disclose problem	Total
General	2 27.85%	73 × 73
Positive assumption	23 (20.33) 27.85%	73 × 73
Negative assumption	36 (20.33) 27.85%	73 × 73
Total	61	219

What is the **expected disclosure** per question?

If the questions makes no difference $(\mathbf{H_0})$:

We would expect that **27.85**% of sellers will **disclose** the problem (regardless of the question)

	Disclose	
Question	problem	Total
General	2	73
	(20.33)	27.85% x 73
Positive	23	73
assumption	(20.33)	27.85% x 73
Negative	36	73
assumption	(20.33)	27.85% × 73
Total	61	219

What is the **expected disclosure** per question?

$$egin{aligned} 0.2785 imes (ext{row 1 total}) &= 20.33 \ 0.2785 imes (ext{row 2 total}) &= 20.33 \ 0.2785 imes (ext{row 3 total}) &= 20.33 \end{aligned}$$

$$egin{aligned} \left(rac{ ext{row 1 total}}{ ext{table total}}
ight) & (ext{column 1 total}) = 20.33 \ \left(rac{ ext{row 1 total}}{ ext{table total}}
ight) & (ext{column 2 total}) = 20.33 \ \left(rac{ ext{row 1 total}}{ ext{table total}}
ight) & (ext{column 3 total}) = 20.33 \end{aligned}$$

	Disclose	Hide	
Question	problem	problem	Total
General	2	71	73
	(20.33)	(52.67)	
Positive	23	50	73
assumption	(20.33)	(52.67)	
Negative	36	37	73
assumption	(20.33)	(52.67)	
Total	61	158	219

What is the **expected** amount of participants who **hide** the problem (per question)?

Computing expected counts in a two-way table.

To calculate the expected count for the i^{th} row and j^{th} column, compute

$$\operatorname{Expected}\,\operatorname{Count}_{\operatorname{row}\,i,\,\operatorname{col}\,j} = \frac{(\operatorname{row}\,i\,\operatorname{total}) \times (\operatorname{column}\,j\,\operatorname{total})}{\operatorname{table}\,\operatorname{total}}$$

Question	Disclose problem	Hide problem	Total
General	(20.33)	71 (52.67)	73
Positive assumption	23 (20.33)	50 (52.67)	73
Negative assumption	36 (20.33)	37 (52.67)	73
Total	61	158	219

General formula
$$\frac{(\text{observed count } - \text{expected count})^2}{\text{expected count}}$$

$$\text{Row 1, Col 1} \qquad \frac{(2-20.33)^2}{20.33} = 16.53$$

$$\text{Row 2, Col 1} \qquad \frac{(23-20.33)^2}{20.33} = 0.35$$

$$\vdots \qquad \vdots$$

$$\text{Row 2, Col 3} \qquad \frac{(37-52.67)^2}{52.67} = 4.66$$

Adding the computed value for each cell gives the chi-squared test statistic X^2 :

$$X^2 = 16.53 + 0.35 + \dots + 4.66 = 40.13$$

Randomization

Variability of the statistic

Null hypothesis:

individuals will disclose or hide the problems **regardless** of the **question** they are given

We can **randomize** the data by reassigning the **61 disclosed** problems and **158 hidden** problems to the three groups at random

Question	Disclose problem	Hide problem	Total
General			73
Positive assumption			73
Negative assumption			73
Total	61	158	219

Question General	Disclose problem	Hide problem 44	Total 73
Positive assumption	15	58	73
Negative assumption	17	56	73
Total	61	158	219

Shows a possible randomization of the observed data under the condition that the null hypothesis is true

Adding the computed value for each cell gives the chi-squared test statistic X^2 :

$$X^2 = 3.7 + 1.4 + \dots + 0.211 = 8$$

1,000 chi-squared statistics generated under the null

We can see that the observed value is so far from the null statistics that the simulated **p-value is zero**.

Note that with a chi-squared test:

- We only know that the two variables (question_class and response) are **related** (i.e., not independent)
- We are not able to claim which type of question **causes** which type of response.

Resources

The content of this presentation is mainly based on the excellent book "Introduction to Modern Statistics" by Mine Çetinkaya-Rundel and Johanna Hardin (2021).

The online version of the book can be accessed for free:

https://openintro-ims.netlifv.app/index.html