Identifying the Type of Sarcasm
in Dravidian Languages
using Deep-Learning Models
FIRE CONFERENCE 2023
BY
RAMYA SIVAKUMAR
C JERIN MAHIBHA
B MONICA JENEFER
OBJECTIVES
Motivation
Objective
INTRODUCTION
RELATED WORKS
S NO | PAPER | YEAR | METHODOLOGY |
1 | Offensive language identification using machine learning and deep learning techniques | 2021 | bidirectional dual encoder with Additive Margin Softmax |
2 | Multilingual sentiment analysis in tamil malayalam and kannada code-mixed social media posts using mbert., in: FIRE (Working Notes) | 2021 | pre-defined BERT model with the ktrain library |
3 | Sarcasm detection over social media platforms using hybrid auto-encoder-based model | 2022 | hybrid model that comprises of BERT, USE, and Autoencoder |
4 | A machine learning approach in analysing the effect of hyperboles using negative sentiment tweets for sarcasm detection | 2022 | created and implemented a data model called the hyperbole-based Sarcasm detection model (HbSD) |
5 | Probabilistic model based context augmented deep learning approach for sarcasm detection in social media | 2020 | created and implemeted a probabilistic model that works with help CNN |
Summary of Related Works
Open Challenges
Methodology
Dataset
DATASET DESCRIPTION
PROPOSED METHODOLOGY
Process
Dataset Usage
Results
secure Rank 4 in
Tamil and Rank 7
in Malayalam
METHODOLOGY FLOW
ERROR ANALYSIS
S NO | TEXT | PREDICTED LABEL | ACTUAL LABEL |
1 | Thala Thala tha tamil in beggast flim | Non-Sarcastic | Sarcastic |
2 | Oruthar mela neenga viswasam kata..Inoruthara neenga asinga paduthuringa.... Deep | Sarcastic | Non-Sarcastic |
Tamil Dataset
S NO | TEXT | PREDICTED LABEL | ACTUAL LABEL |
1 | Atom bomb, tsunami, volcano eruption oke Non-sarcastic Sarcastic athi jeevichadallejapan.Last dialogue seriyayilla | Non-Sarcastic | Sarcastic |
2 | Kottayam to paala daily kettuuu vattanu e songgg my addicted song | Non-Sarcastic | Sarcastic |
Malayalam Dataset
CONCLUSION
References
[1]A. REYES, P. ROSSO, T. VEALE, A MULTIDIMENSIONAL APPROACH FOR DETECTING IRONY IN TWITTER,
LANGUAGE RESOURCES AND EVALUATION 47 (2013) 239–268.
[2] M. BIRJALI, M. KASRI, A. BENI-HSSANE, A COMPREHENSIVE SURVEY ON SENTIMENT ANALYSIS:
APPROACHES, CHALLENGES AND TRENDS, KNOWLEDGE-BASED SYSTEMS 226 (2021) 107134.
[3] C. J. MAHIBHA, S. KAYALVIZHI, D. THENMOZHI, SENTIMENT ANALYSIS USING CROSS LINGUAL WORD
EMBEDDING MODEL (2021).
[4] D. K. SHARMA, B. SINGH, S. AGARWAL, H. KIM, R. SHARMA, SARCASM DETECTION OVER SOCIAL
MEDIA PLATFORMS USING HYBRID AUTO-ENCODER-BASED MODEL, ELECTRONICS 11 (2022) 2844.
[5] A. B. MERIEM, L. HLAOUA, L. B. ROMDHANE, A FUZZY APPROACH FOR SARCASM DETECTION IN SOCIAL
NETWORKS, PROCEDIA COMPUTER SCIENCE 192 (2021) 602–611.
[6] K. SUNDARARAJAN, A. PALANISAMY, PROBABILISTIC MODEL BASED CONTEXT AUGMENTED DEEP
LEARNING APPROACH FOR SARCASM DETECTION IN SOCIAL MEDIA, INT. J. ADV. SCI. TECHNOL 29 (2020)
8461–79.
[7] D. VINOTH, P. PRABHAVATHY, AN INTELLIGENT MACHINE LEARNING-BASED SARCASM DETECTION AND CLASSIFICATION MODEL ON SOCIAL NETWORKS, THE JOURNAL OF SUPERCOMPUTING 78 (2022) 10575–10594. [8] V. GOVINDAN, V. BALAKRISHNAN, A MACHINE LEARNING APPROACH IN ANALYSING THE EFFECT OF HYPERBOLES USING NEGATIVE SENTIMENT TWEETS FOR SARCASM DETECTION, JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES 34 (2022) 5110–5120.
References
[9] A. KALAIVANI, D. THENMOZHI, MULTILINGUAL SENTIMENT ANALYSIS IN TAMIL MALAYALAM AND KANNADA CODE-MIXED SOCIAL MEDIA POSTS USING MBERT., IN: FIRE (WORKING NOTES), 2021, PP.
1020–1028.
[10] S. BELLAMKONDA, M. LOHAKARE, S. PATEL, A DATASET FOR DETECTING HUMOR IN TELUGU SOCIAL MEDIA
TEXT, IN: PROCEEDINGS OF THE SECOND WORKSHOP ON SPEECH AND LANGUAGE TECHNOLOGIES FOR
DRAVIDIAN LANGUAGES, ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, DUBLIN, IRELAND, 2022, PP.
9–14. URL: HTTPS://ACLANTHOLOGY.ORG/2022.DRAVIDIANLANGTECH-1.2. DOI:10.18653/V1/2022.
DRAVIDIANLANGTECH- 1.2.
[11] S. K. LORA, G. SHAHARIAR, T. NAZMIN, N. N. RAHMAN, R. RAHMAN, M. BHUIYAN, ET AL., BEN-SARC:
A CORPUS FOR SARCASM DETECTION FROM BENGALI SOCIAL MEDIA COMMENTS AND ITS BASELINE
EVALUATION (2022).
[12] J. MAHIBHA, S. KAYALVIZHI, D. THENMOZHI, OFFENSIVE LANGUAGE IDENTIFICATION USING MACHINE
LEARNING AND DEEP LEARNING TECHNIQUES (2021).
[13] B. R. CHAKRAVARTHI, N. SRIPRIYA, B. BHARATHI, K. NANDHINI, S. CHINNAUDAYAR NAVANEETHAKRISHNAN,
T. DURAIRAJ, R. PONNUSAMY, P. K. KUMARESAN, K. K. PONNUSAMY, C. RAJKUMAR,
OVERVIEW OF THE SHARED TASK ON SARCASM IDENTIFICATION OF DRAVIDIAN LANGUAGES (MALAYALAM
AND TAMIL) IN DRAVIDIANCODEMIX, IN: FORUM OF INFORMATION RETRIEVAL AND EVALUATION FIRE
- 2023, 2023.
[14] Z. LAN, M. CHEN, S. GOODMAN, K. GIMPEL, P. SHARMA, R. SORICUT, ALBERT: A LITE BERT FOR
SELF-SUPERVISED LEARNING OF LANGUAGE REPRESENTATIONS, ARXIV PREPRINT ARXIV:1909.11942
(2019).
THANK YOU