
Template by: Laurent Lessard

Data Types and Functions
Python Module 3

Basic Data Types

● Different Data Types
○ Built-In: Integer, Float, Boolean, Strings,...
○ User Defined: Classes

● Data Types also determine whether a certain operation
makes sense for an object

2

5 + 7 # Addition, returns 12

'Data' + 'Science' # Concatenation, returns 'DataScience'

5 + 'Science' # Error! Makes no sense!

'5' + 'Data' # Concatenation, returns '5Data'

Integers

● Integers (int) are whole numbers like: 4, -23, 1782
● No limit in Python 3 on how large an integer can be

(subject to the memory limits of the computer!)

a = -202

print(a)

-202

type(a)

int

3

Floats

● Floats (float) are numbers with a decimal point: -202.25
● Only about 16 significant digits of precision are stored.
● Use e for scientific notation. Ex: 1.4e24 (= 1.4 × 1024)

a = 2.1e3

print(a)

2100.0

type(a)

float

4

Booleans

● Booleans (bool) represent True or False.
● Widely used with logical operators like and, or, etc.

b1, b2 = True, False

type(b1)

bool

b1 and b2

False

5

x = -1

x == 1 or x > 2

False

Strings

● Strings (str) represent a sequence of characters.
● Can use either single or double quotation marks.

s = "Data12"

s = 'Data12'

type(s) # gives the same answer for both!

str

s = "Two words"

len(s)

9

● Length of a string can be found using the len function.

6

Converting between data types

● The functions int(), float(), bool(), str() perform
conversions between data types.

● The function type() returns the data type of an object.
● Not all conversions are possible!

7

Built-in Data Types Summarized

Data Type Used to Represent Examples

int Integers: Whole numbers 1, 44, -999, 0

float Floats: Numbers with a decimal point 3.14159, -2.17, 0.0

str Strings: A series of characters "Hello World", "Data",
'This is a string'

bool Boolean: A logical (true or false) value True, False

8

Functions

● A block of typically re-usable code to perform a task.
○ Example: A block of code that takes in your UW Campus ID and returns

information like first name, last name, etc.

● Why Functions?
○ Removes redundancy in code.
○ Separates code into modules for easier readability and maintenance.

● “Should I write a function to do this?”
○ (the answer is probably yes!)

9

Types of functions

● Built-In
○ Part of Python packages/libraries. Examples:

print("Hello World!"), max(23,43,12), etc.

● User-Defined
○ Written by the user (you!) to achieve a specific purpose.
○ Can be created/modified as required, unlike built-in functions.

10

Using Built-in Functions

● Example: Printing to console - the print function

● Some functions are not available by default and must
be imported via the appropriate package or library

print("Hello World!") # Name followed by arguments in brackets ()

Hello World!

from math import sqrt

sqrt(16)

4.0

11

Anatomy of a user-defined function

def average(a,b):

 avg = (a+b)/2

 return avg

Keyword def

Function Name.
Same conventions for
naming variables apply

Function arguments.
If there are no arguments, write ()

Return statement (optional)
This exits the function and
returns something.

12

Function Call average(10,20)

15.0

The colon “:” is necessary!

Function body.
The indentation (tab) is
important! It indicates
where the definition ends!

Positional vs Named arguments

● Specify a default value to make an argument optional

def weather(day = 'Monday', forecast = 'cloudy'):

 print('It will be', forecast, 'on', day)

13

weather() # It will be cloudy on Monday

weather('Tuesday','sunny') # It will be sunny on Tuesday

weather('Wednesday') # It will be cloudy on Wednesday

weather('rainy') # It will be cloudy on rainy

weather(forecast='rainy') # It will be rainy on Monday

weather(forecast='dry', day='Friday') # It will be dry on Friday

● Arguments can be specified positionally or by name

