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Multiple Object Tracking is not a
single problem, it’s a set of
problems!

Introduction

Let’s look at a few examples to see
11)2



Vehicle Tracking

Properties
e Predictable motion
patterns (linear models can
be sufficient)
e Lack of unique appearance

features
e Relative object size
changes
Applications
e Automated traffic
monitoring

Lou et al, 2017


http://www.youtube.com/watch?v=HtpiAUBWS0w

People in the Shopping Mall

Properties
e Egocentricview and
camera angle changes
e Frequent birth and death
events
e Missing data (occlusions)
Background changes
e Noisy (Brownian) motion

motchallenge


https://docs.google.com/file/d/1_YM7v7q8VM8rVAohdjWWHpK_m6w8qOQv/preview

Tracking in Sports

Properties

e Sporadic sudden changesin
the flow of the game
(semi-noisy motion patterns)

e Large train/test distribution
shift (in background, player
jerseys, etc.)

e Lackof unique markers

Applications
e Collecting statistics
e Individual training

https://learnopencv.com/



https://learnopencv.com/

Pedestrians on the Street

Properties 3
e Occlusions

Birth and death events

Out of plane rotations

Unpredictable motion patterns

Low spatial resolution

Complex object transformations |

(humans walking or moving their

arms)

|

Applications

e Automated monitoring
motchallenge


https://docs.google.com/file/d/1gFYcwTkr5nD_TohUkASJHcA8Pxi4EEFF/preview

Zebrafish 3D Behavior Imaging

Properties Applications
e Piecewise linear motion patterns e Understanding neural
® Sparse spatial information representations of behavior
e Multi-camera recordings to avoid
occlusions

" . .
Accu racy Is very important motchallenge


https://docs.google.com/file/d/1ZidYgy0u0rzOBlICmOH8zEWd1c3tqOJ2/preview

Tracking Body Parts in Mouse

Properties _

e Relative distances are fixed in 3 Kl : ‘
dimensions 1 “ .

e Multi-camera recordings ? y »

Applications
e Neural basis of motor control

e Understanding social behavior

International Brain Lab



Tracking Human Body Parts

Properties
e Relative distances are fixed in 3
dimensions

Applications
e Pose estimation

e Action recognition and
classification

Photo credit:


https://www.analyticsvidhya.com

Cell Migration

Properties
e Celldivision (frequent birth
events)

e Lack of unique appearance and
shape features
e Noisy motion

Applications
e Understanding cell
development and migration

10 um

0d00:00:01.000

celltrackingchallenge



Developing Drosophila Melanogaster embryo

Properties
e Low spatial resolution

Application
e Extracting neural activities to
understand neural basis of
development

UUUUUUUU

celltrackingchallenge



Mouse muscle stem cells in hydrogel microwells

Properties
e Low temporal resolution

celltrackingchallenge



Developing Tribolium Castaneum embryo

Properties
e Complex motion and
deformation

celltrackingchallenge



MDA231 human breast carcinoma cells

Properties
e Lackof unique shape and
appearance markers
e No colorinformation

celltrackingchallenge



Summary of challenges

e Low spatial or temporal resolution Important things to keep in mind
e Diverse motion patterns (linear, nonlinear,
piecewise linear, noisy) Train vs. test distribution shift
e Lack of unique appearance or shape features e Lighting conditions
e Object transformations (relative size changes, e Data coming from different
out-of-plane rotations) labs/environments/cameras
e Camera properties (egocentric view,
multi-camera recordings) Amount of training data
e Frequent birth and death events (exploratory vs. deployed
e Missing data and occlusions experiments)
e Train/test distribution shift (background e Unsupervised (old school)
changes) e Supervised (modern)
e Spatial structure (relative distances fixed in 3 e Semi-supervised (SOTA)

dimensions, complex motion and deformation)
e Online vs. offline tracking



Let's see how evaluation works before reviewing
approaches

Recall © Ratio of correctly matched detections to ground-truth detections

Precision 1 Ratio of correctly matched detections to total result detections

MODP 1 Average overlap between true positives and ground truth

MOTA 7 Combines false negatives, false positives and mismatch rate

IDS | Number of times that a tracked trajectory changes its matched ground-truth identity (or vice versa)
MOTP 7 Overlap between the estimated positions and the ground truth averaged over the matches

TDE | Distance between the ground-truth annotation and the tracking result

MT 1 Percentage of ground-truth trajectories which are covered by the tracker output for more than 80% of their length
ML | Percentage of ground-truth trajectories which are covered by the tracker output for less than 20% of their length

Luo et al, 2017



Let's see how evaluation works before reviewing
approaches

GT Traj. FP TP FN Tracked
— e © o®

i OO

ID switches are important, we want the tracked
object to be stable across frames (different from
accuracy evaluation in static images)

Leal (2021) - MOT Slides



Review of Existing
Approaches



Unique markers (e.g. faces), perfect detection

(1) Frame to frame matching (2) Matching across all frames
e Bipartite graph matching e K-shortest paths
e Hungarian algorithm e Dynamic programming

e Max-flow network



Graph construction

Schulter et al, 2017



Graph Construction
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How to handle occlusions?

How to handle cell divisions

How to handle birth and death

Mills-Tettey et al, 2007



Graph Construction: A More Complete View
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K-Shortest Paths

Schulter et al, 2017



Linear/integer programming
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What if detections are not perfect? Crowded
scenes or fast videos

(1) Incorporate more into the (2) Learn the cost

distance/cost : :
e Linear program with

e Position training data
e Color or color-derived
features

e Gradient/flow features
e Representational
distance



More complex distances and appearance models

[z y I Iz Iy Igx Iyy)

Pixel-wise Features

Amage VVindow Covariance Matrix

Covariance matrix

e e

Point features Gradient based Depth features Color features
features (HOG

Luo et al, 2017



K-Shortest Paths Cost Learning

Optimization Graph Construction

x* = argminc'x

X

stAx S b Cx=0,

Cost Learning

arg min £ (x*,x*)
e

s.t. x* = argminc(f,0) x

Ax=h COx =0,

Schulter et al, 2017



What if there are no unique markers, detection is
really bad, and images are noisy?

(1) Use probabilistic (2) Incorporate spatial and
formulation temporal structure

Conditional random fields
Quadratic programming
Temporal smoothness
Impose motion model
(linear, piecewise linear,
etc.)

e State space models and
Kalman filter
e Particle filtering



Probabilistic Formulation
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Luo et al, 2017



Conditional Random Fields
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Better use of training data, combine with recent
advances in Al

(1) Deep learning based (2) Extensions to (3) Incorporating spatial
appearance models probabilistic formulation and temporal structure

e Deep lab cut e Deep graph pose e Lightning pose



Deep Lab Cut (DLC)

a b Label features in frames c Train DNN Benefits
Extract characteristic
frames to label

e Fast and scalable

ResNet-50 Drawbacks

(pretrained
on ImageNet)

e Requires labeled
data

e Requires
fine-tuning or
retraining for new

‘-

!

dApply to datasets: use trained network to predict labels —— datasets
layers e Does not have an
o underlying
- - temporal/spatial/mo
et tion model

Mathis et al, 2019



From DLC to Deep Graph Pose (DGP)
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DGP solves major DLC issues

Uses unlabeled data

Incorporates temporal smoothness
Incorporates spatial structure
Uses probabilistic formulation

Wu et al, 2021



Deep Graph Pose
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From DGP to Lightning Pose

Temporal Multiview
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DGP does this too!

Biderman et al, 2023
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