Multiple Object Tracking

Guest lecture (NYU, neuroinformatics class)

Amin Nejatbakhsh

Current: Flatiron Research Fellow in the Center for Computational Neuroscience and Visiting Scholar at NYU **Past:** Ph.D. in the Center for Theoretical Neuroscience at Columbia University

Research Interests: Statistics, Machine Learning, Dynamical Systems, Computer Vision, Neuroscience

Research Projects

*C. elegans*Neural Tracking

James Yu, Amin Nejatbakhsh, ... *Under Review*

Tracking and Signal Extraction from Fully Moving *C. elegans*

Introduction

Multiple Object Tracking is not a single problem, it's a <u>set</u> of problems!

Let's look at a few examples to see why.

Vehicle Tracking

Properties

- Predictable motion patterns (linear models can be sufficient)
- Lack of unique appearance features
- Relative object size changes

Applications

Automated traffic monitoring

People in the Shopping Mall

Properties

- Egocentric view and camera angle changes
- Frequent birth and death events
- Missing data (occlusions)
- Background changes
- Noisy (Brownian) motion

Tracking in Sports

Properties

- Sporadic sudden changes in the flow of the game (semi-noisy motion patterns)
- Large train/test distribution shift (in background, player jerseys, etc.)
- Lack of unique markers

Applications

- Collecting statistics
- Individual training

Pedestrians on the Street

Properties

- Occlusions
- Birth and death events
- Out of plane rotations
- Unpredictable motion patterns
- Low spatial resolution
- Complex object transformations (humans walking or moving their arms)

Applications

Automated monitoring

Zebrafish 3D Behavior Imaging

Properties

- Piecewise linear motion patterns
- Sparse spatial information
- Multi-camera recordings to avoid occlusions
- Accuracy is very important

Applications

Understanding neural representations of behavior

Tracking Body Parts in Mouse

Properties

- Relative distances are fixed in 3 dimensions
- Multi-camera recordings

Applications

- Neural basis of motor control
- Understanding social behavior

Tracking Human Body Parts

Properties

Relative distances are fixed in 3 dimensions

Applications

- Pose estimation
- Action recognition and classification

Cell Migration

Properties

- Cell division (frequent birth events)
- Lack of unique appearance and shape features
- Noisy motion

Applications

 Understanding cell development and migration

Developing Drosophila Melanogaster embryo

Properties

Low spatial resolution

Application

 Extracting neural activities to understand neural basis of development

Mouse muscle stem cells in hydrogel microwells

Properties

• Low temporal resolution

Developing Tribolium Castaneum embryo

Properties

Complex motion and deformation

MDA231 human breast carcinoma cells

Properties

- Lack of unique shape and appearance markers
- No color information

Summary of challenges

- Low spatial or temporal resolution
- Diverse motion patterns (linear, nonlinear, piecewise linear, noisy)
- Lack of unique appearance or shape features
- Object transformations (relative size changes, out-of-plane rotations)
- Camera properties (egocentric view, multi-camera recordings)
- Frequent birth and death events
- Missing data and occlusions
- Train/test distribution shift (background changes)
- Spatial structure (relative distances fixed in 3 dimensions, complex motion and deformation)
- Online vs. offline tracking

Important things to keep in mind

Train vs. test distribution shift

- Lighting conditions
- Data coming from different labs/environments/cameras

Amount of training data (exploratory vs. deployed experiments)

- Unsupervised (old school)
- Supervised (modern)
- Semi-supervised (SOTA)

Let's see how evaluation works before reviewing approaches

Recall ↑	Ratio of correctly matched detections to ground-truth detections					
Precision ↑	Ratio of correctly matched detections to total result detections					
MODP ↑	Average overlap between true positives and ground truth					
МОТА ↑	Combines false negatives, false positives and mismatch rate					
IDS ↓	Number of times that a tracked trajectory changes its matched ground-truth identity (or vice versa)					
MOTP ↑	Overlap between the estimated positions and the ground truth averaged over the matches					
TDE ↓	Distance between the ground-truth annotation and the tracking result					
MT ↑	Percentage of ground-truth trajectories which are covered by the tracker output for more than 80% of their length					
ML ↓	Percentage of ground-truth trajectories which are covered by the tracker output for less than 20% of their length					

Let's see how evaluation works before reviewing approaches

ID switches are important, we want the tracked object to be stable across frames (different from accuracy evaluation in static images)

Review of Existing Approaches

Unique markers (e.g. faces), perfect detection

- (1) Frame to frame matching
 - Bipartite graph matching
 - Hungarian algorithm

- (2) Matching across all frames
 - K-shortest paths
 - Dynamic programming
 - Max-flow network

Graph construction

Bipartite Graph Matching

Graph Construction

How to handle occlusions?

How to handle cell divisions

How to handle birth and death

Hungarian Algorithm

w_{ij}	u_1	u_2	u_3	u_4	u_5	u_6
ν ₁	0	8	9	0	6	0
v_2	0	4	0	5	5	8
v_3	7	0	0	9	0	0
v_4	3	0	0	8	8	0
ν ₅	0	6	0	7	0	0
٧6	0	8	0	0	9	3

Graph Construction: A More Complete View

K-Shortest Paths

Linear/integer programming

IP: NP complete
 KSP: O(k(m + n log n))
 Min-Cut: O(kn²m log n)
 LP: polynomial-time

Linear/integer program

$$\begin{split} \text{Maximize} & \sum_{t,i} \log \left(\frac{\rho_i^t}{1 - \rho_i^t} \right) \sum_{j \in \mathcal{N}(i)} f_{i,j}^t \\ \text{subject to} & \forall t, i, j, \ f_{i,j}^t \geq 0 \\ & \forall t, i, \ \sum_{j \in \mathcal{N}(i)} f_{i,j}^t \leq 1 \\ & \forall t, i, \ \sum_{j \in \mathcal{N}(i)} f_{i,j}^t - \sum_{k: i \in \mathcal{N}(k)} f_{k,i}^{t-1} \leq 0 \\ & \sum_{j \in \mathcal{N}(v_{\text{source}})} f_{v_{\text{source}},j} - \sum_{k: v_{\text{sink}} \in \mathcal{N}(k)} f_{k,v_{\text{sink}}} \leq 0 \,. \end{split}$$

KSP formulation

$$cost(P_l) = \sum_{i=1}^{l} cost(p_i^*).$$
$$cost(p_l^*) = \sum_{e_{i,j}^t \in p_l^*} c(e_{i,j}^t).$$

What if detections are not perfect? Crowded scenes or fast videos

- (1) Incorporate more into the distance/cost
 - Position
 - Color or color-derived features
 - Gradient/flow features
 - Representational distance

- (2) Learn the cost
 - Linear program with training data

More complex distances and appearance models

K-Shortest Paths Cost Learning

Optimization

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{arg \, min}} \mathbf{c}^{\top} \mathbf{x}$$

s.t. $\mathbf{A} \mathbf{x} \leq \mathbf{b}$, $\mathbf{C} \mathbf{x} = \mathbf{0}$,

Cost Learning

$$\operatorname{arg\,min}_{\Theta} \mathcal{L}\left(\mathbf{x}^{\mathrm{gt}}, \mathbf{x}^{*}\right) \\
s.t. \ \mathbf{x}^{*} = \operatorname{arg\,min}_{\mathbf{x}} \mathbf{c}(\mathbf{f}, \Theta)^{\top} \mathbf{x} \\
\mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{C}\mathbf{x} = \mathbf{0},$$

Graph Construction

What if there are no unique markers, detection is really bad, and images are noisy?

- (1) Use probabilistic formulation
 - State space models and Kalman filter
 - Particle filtering

- (2) Incorporate spatial and temporal structure
 - Conditional random fields
 - Quadratic programming
 - Temporal smoothness
 - Impose motion model (linear, piecewise linear, etc.)

Probabilistic Formulation

States

Observations

$$\mathbf{S}_t = (\mathbf{s}_t^1, \mathbf{s}_t^2, ..., \mathbf{s}_t^{M_t})$$

$$\mathbf{O}_t = (\mathbf{o}_t^1, \mathbf{o}_t^2, ..., \mathbf{o}_t^{M_t})$$

Inference

$$\widehat{\mathbf{S}}_{1:t} = rg \max_{\mathbf{S}_{1:t}} P\left(\mathbf{S}_{1:t} \middle| \mathbf{O}_{1:t}\right)$$
. Important benefit: cost function is automatically given

Predict:
$$P(\mathbf{S}_t|\mathbf{O}_{1:t-1}) = \int P(\mathbf{S}_t|\mathbf{S}_{t-1})P(\mathbf{S}_{t-1}|\mathbf{O}_{1:t-1})d\mathbf{S}_{t-1}$$
,

Update:
$$P(\mathbf{S}_t|\mathbf{O}_{1:t}) \propto P(\mathbf{O}_t|\mathbf{S}_t)P(\mathbf{S}_t|\mathbf{O}_{1:t-1})$$
.

Emissions (a.k.a. Appearance Model)

$$P\left(\mathbf{O}_{t}|\mathbf{S}_{t}\right)$$

State Dynamics (a.k.a. Motion Model)

$$P\left(\mathbf{S}_{t}|\mathbf{S}_{t-1}\right)$$

Conditional Random Fields

Better use of training data, combine with recent advances in Al

- (1) Deep learning based appearance models
 - Deep lab cut

- (2) Extensions to probabilistic formulation
 - Deep graph pose

- (3) Incorporating spatial and temporal structure
 - Lightning pose

Deep Lab Cut (DLC)

Benefits

Fast and scalable

Drawbacks

- Requires labeled data
- Requires fine-tuning or retraining for new datasets
- Does not have an underlying temporal/spatial/mo tion model

From DLC to Deep Graph Pose (DGP)

$$p(y|x,\beta) = \frac{1}{Z(x,\beta)} \exp\left(-\sum_{t=1}^{T} \sum_{j=1}^{J} \phi_n^j(y_{t,j}, x_t) - \sum_{t=1}^{T} \sum_{j=1}^{J} \phi_s^j(y_{t,j}, y_{t+1,j}) - \sum_{t=1}^{T} \sum_{i,j \in \mathcal{E}} \phi_s^{ij}(y_{t,i}, y_{t,j})\right),$$

$$\phi_s^{ij}(y_{t,i}, y_{t,j}) = \frac{1}{2} w_s^{ij} ||y_{t,i} - y_{t,j}||^2,$$

$$\phi_t^j(y_{t,j}, y_{t+1,j}) = \frac{1}{2} w_t^j ||y_{t,j} - y_{t+1,j}||^2,$$

DGP solves major DLC issues

- Uses unlabeled data
- Incorporates temporal smoothness
- Incorporates spatial structure
- Uses probabilistic formulation

Deep Graph Pose

From DGP to Lightning Pose

Temporal smoothness

Multiview consistency

Low dimensionality

DGP does this too!

Lightning Pose Results

Temporal

Dimensionality Multiview Combined

References

- 1. Luo, Wenhan, et al. "Multiple object tracking: A literature review." Artificial intelligence 293 (2021): 103448.
- 2. Korsah, G. A., A. T. Stentz, and M. B. Dias. "The dynamic hungarian algorithm for the assignment problem with changing costs." Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-07-27 (2007).
- 3. Zhang, Li, Yuan Li, and Ramakant Nevatia. "Global data association for multi-object tracking using network flows." 2008 IEEE conference on computer vision and pattern recognition. IEEE, 2008.
- 4. Schulter, Samuel, et al. "Deep network flow for multi-object tracking." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.
- 5. Berclaz, Jerome, et al. "Multiple object tracking using k-shortest paths optimization." IEEE transactions on pattern analysis and machine intelligence 33.9 (2011): 1806-1819.
- 6. Chaudhary, Shivesh, et al. "Graphical-model framework for automated annotation of cell identities in dense cellular images." Elife 10 (2021): e60321.
- 7. Mathis, Alexander, et al. "DeepLabCut: markerless pose estimation of user-defined body parts with deep learning." Nature neuroscience 21.9 (2018): 1281-1289.
- 8. Wu, Anqi, et al. "Deep Graph Pose: a semi-supervised deep graphical model for improved animal pose tracking." Advances in Neural Information Processing Systems 33 (2020): 6040-6052.
- 9. Biderman, Dan, et al. "Lightning Pose: improved animal pose estimation via semi-supervised learning, Bayesian ensembling, and cloud-native open-source tools." bioRxiv (2023).

Public Datasets:

- 1. https://motchallenge.net/
- 2. https://celltrackingchallenge.net/
- 3. https://www.crcv.ucf.edu/data/