Lipid metabolism - overview

Dr.S.Sethupathy

Oxidation of Fatty Acids

- Fatty acids are an important source of energy
- Oxidation is the process where energy is produced by degradation of fatty acids

There are several types of fatty acids oxidation.

- (1) β- oxidation of fatty acid
- (2) α- oxidation of fatty acids
- (3) ω- oxidation of fatty acids

B- oxidation of fatty acid

- Beta-oxidation is the process by which fatty acids, in the form of Acyl-CoA molecules, are broken down in mitochondria and/or in peroxisomes to generate Acetyl-CoA – enters TCA cycle
- It occurs in many tissues including liver kidney and heart.
- Fatty acids oxidation doesn't occur in the brain, as fatty acid can't be taken up by that organ.

(C₁₆) R—CH₂—
$$\frac{\beta}{\text{CH}_2}$$
— $\frac{\alpha}{\text{CH}_2}$ —C—S-CoA Palmitoyl-CoA

Stages

 The beta oxidation of fatty acids involve three stages:

- Activation of fatty acids in the cytosol
- Transport of activated fatty acids into mitochondria (<u>carnitine shuttle</u>)
- 3. Beta oxidation proper in the mitochondrial matrix

1) Activation of FA:

This proceeds by <u>FA thiokinase</u> (acyl COA synthetase) present in <u>Cytosol</u>

Thiokinase requires ATP, COA SH, Mg++. The product of this reaction is FA acyl COA and water.

2- Transport of fatty acyl CoA from cytosol into

Initgehandrigi CoAttaverses in establer mitochondria membrane with a special transport mechanism called <u>Carnitine shuttle</u>.

2-Transport of acyl CoA into the mitochondria (rate-limiting step)

- Acyl groups from acyl COA is transferred to carnitine to form acyl carnitine catalyzed by carnitine acyltransferase I, in the outer mitochondrial membrane.
- Acylcarnitine is then shuttled across the inner mitochondrial membrane by a translocase enzyme.
- The acyl group is transferred back to CoA in matrix by carnitine acyl transferase II.
- Finally, carnitine is returned to the cytosolic side by translocase, in exchange for an incoming acyl carnitine.

3. Proper of β – oxidation in the mitochondrial

There metrixeps in β C- oxidation

Step I – Oxidation by *FAD linked dehydrogenase*

Step II – Hydration by **Hydratase**

Step III – Oxidation by NAD linked dehydrogenase

Step IV – Thiolytic clevage **Thiolase**

The first reaction is the oxidation of acyl CoA by an acyl CoA dehyrogenase to give α-β unsaturarted acyl CoA (enoyl CoA).

FAD is the hydrogen acceptor.

The second reaction is the <u>hydration</u> of the double bond to β -hydroxyacyl CoA (p-hydroxyacyl CoA).

 The third reaction is the <u>oxidation</u> of β-hydroxyacyl CoA to produce β-Ketoacyl CoA a NAD-dependent reaction

- The fourth reaction is cleavage of the two carbon fragment by splitting the bond between α and β carbons
- By thiolase enzyme.

energetics

- FADH2 1.5 ATP
- NADH2 2.5 ATP
- Each cycle 4 ATP
- Palmitic acid 7 cycles $7 \times 4 = 28$
- Acetyl CoA 8 x 10 ATP 80
- Activation energy loss 2 ATP
- Net energy- 108 2 = 106 ATP

Regulation

- The availability of fatty acids influences beta oxidation.
- Glucagon by activating hormone sensitive lipase increases FFA level in blood
- Insulin inhibits Beta oxidation by inhibiting this enzyme.
- Malonyl CoA inhibits CAT-1 activity.

Cholesterol biosynthesis

Location of pathway

- The pathway is located in the cytosol
- 2. Raw material Acetyl-CoA.
- Most cells can make cholesterol, but liver is most active.

Stages

- 1 Synthesis of mevalonate
- 2. Synthesis of isopentenyl units
- 3. Synthesis of squalene
- 4. Synthesis of lanosterol
- 5. Synthesis of cholesterol

Cholesterol Biosynthesis: Formation of Mevalonate

Liver is primary site of cholesterol biosynthesis

CH₃COSCoA

HMG CoA Synthase

HMG-CoA Reductase

COO-CH₂ CH3-C-OH β -Hydroxy- β -methylglutaryl-CoA (HMG-CoA) S-CoA 2 NADPH + 2H+ HMG-CoA 2NADP* reductase CoA-SH 1C00 Mevalonate 5CH2OH

HMG-CoA reductase

- integral membrane protein in the ER
- 2. carries out an irreversible reaction
- 3. is an important regulatory enzyme in cholesterol synthesis

Inhibitors of HMG-CoA Reductase

Mevalonate

$$R_1 = H$$

$$R_1 = CH_3$$

CH₃

 R_2

$$R_1 = H$$

$$R_1 = H$$

$$R_2 = H$$

$$R_2 = CH_3$$

$$R_2 = OH$$

$$R_2 = CH_3$$

Compactin

CH₃

Pravastatin (Pravachol)

Lovastatin (Mevacor)

Cholesterol Biosynthesis: Processing of Mevalonate

CH₃
CH₃-C=CH₂CH₂OPOP
Dimethylallyl
pyrophosphate

Isomerase

CH₂=C-CH₂CH₂OPOP

Isopentenyl

CH₃ pyrophosphate

Cholesterol Synthesis:

Cholesterol Biosynthesis: Isoprenoid Condensation

Regulation of Cholesterol Production

Transformations of Cholesterol: Bile Salts

Transformations of Cholesterol: Steroid Hormones

Factors affecting serum cholesterol

- Role of Fatty acids
- Effect of high fructose intake on blood lipids
- Hypercholesterolemia occurs in diabetes mellitus,
 Hypothyroidism, Obstructive jaundice, Familial hypercholesterolemia.

 Hereditary factor -In familial hypercholesterolemia, due to LDL receptor defect, LDL cholesterol uptake is reduced

- Hypolipidemic drugs
- Statins competitive inhibitors of HMG CoAreductase.
- Clofibrate It enhances fecal excretion of cholesterol and bile acids and also increases the peroxisomal oxidation of fatty acids in liver.

- Cholestyramine This increases their excretion bile acids in the stools.
- Clofibrates, gemfibrosil lower plasma TGL by decreasing VLDL .Activate lipoprotein lipase.
- Probucol increases the catabolism of LDL. It also has antioxidant properties
- Nicotinic acid reduces lipolysis and inhibits VLDL production.

Ketogenesis

- Acetoacetate, beta hydroxy butyrate and acetone
- In the liver mitochondria.

- Two molecules of acetyl CoA condense to form acatoacetyl CoA by thiolase or acetoacetyl CoA synthase.
- Step two: Acetoacetyl CoA condenses with another molecule of acetyl CoA to form 3-Hydroxy-3-methylglutaryl CoA (HMG-CoA) by HMG-CoA synthase enzyme.
- Step three: HMG-CoA lyase cleaves HMG CoA to acetoacetate and acetyl CoA.
- Step four: Acetoacetate is the primary ketone body.
- It is reduced to beta hydroxy butyrate by beta-hydroxy butyrate dehydrogenase using NADH+H+ as coenzyme.
- Acetoacetate undergoes non enzymatic spontaneous decarboxylation to acetone.

Fate of ketone bodies

- 3-hydroxy butyrate is the predominant ketone body present in blood and urine in ketosis.
- Liver cannot utilize ketone bodies
- It lacks the particular enzyme- the CoA transferase or thiophorase.
- Peripheral tissues utilize them.- Succinyl CoA acetoacetate CoA transferase or thiophorase
- Succinyl CoA + acetoacetate succinate + acetacetyl CoA

Regulation

- If there is increase of lipolysis, there is increase of ketogenesis.
- Insulin inhibits ketogenesis
- Glucagon and norepinephrine promotes .
- In diabetes mellitus, due to insulin deficiency, ketosis occurs.
- Starvation increase of ketogenesis

Chylomicrons

- Dietary lipid absorbed in the small intestine is incorporated into chylomicrons which reach systemic circulation via lymphatics, thoracic duct.
- In circulation, by the action of lipoprotein lipase (LPL), chylomicrons on releasing fatty acids and glycerol become smaller in size known as chylomciron remnants.
- The remnants are removed in the liver by receptor mediated endocytosis.
- Insulin increases LPL activity
- In type I hyperlipoproteinemia, there is a defect in LPL leading to fasting chylomicronemia. VLDL is also increased
- Hepatomegaly, eruptive xanthoma, lipemia retinalis and abdominal pain are characteristic features

Treatment

- Fat diet containing short and medium chain fatty acids
- High carbohydrates diet will induce VLDL synthesis and it is to be limited
- When fasting serum kept in fridge for 24 hrs, a creamy layer on top due to chylomicrons appear and on electrophoresis, a band at the point of application is seen.

VLDL Very low density lipoproteins

- They are involved in the transport of triacyglcyerol, cholesterol produced in the liver.
- LPL acts on it and releases fatty acids and glycerol on hydrolysis of TGL
- VLDL becomes IDL that contain apo B100 & apo E
- Part of IDL is taken up liver via Apo B100, E receptor
- Part of IDL releases TGL, apo E and becomes LDL-a cholesterol rich, apo Bioo containing lipoprotein.

Low density lipoprotein (LDL)

- LDL transports cholesterol from liver to extra hepatic tissues. LDL concentration positively correlates with cardiovascular disease
- LDL is taken up by LDL receptors mainly present in liver, adrenal cortex and extra hepatic tissues.

Familial hypercholesterolemia

- Type II a-hyperlipoproteinemia
- It is due to LDL receptor defect
- Serum cholesterol and LDL cholesterol are increased where as TGL is normal on electrophoresis, beta-band is increased
- Tuberous xanthoma, atherosclerosis and early CAD. Low cholesterol high PUFA diet and drugs such as HMG CoA reductase inhibitors, bile acid binding resin are given.

High density lipoprotein

- It is synthesized and secreted from both liver and intestine.
- Nascent HDL is discoid, phospholipid bilayer containing apo A and free cholesterol.
- Plasma enzyme LCAT (Lecithin cholesterol acyl transferase) by activator Apo A1 bind to the disk and esterifies cholesterol.
- Non-polar cholesteryl ester forms the core and HDL becomes spherical .

- Lipid profile (Reference range)
- Total serum cholesterol : 140 200 mg/dL
- Serum LDL cholesterol less than 100mg/dl
- Serum triglycerides 50- 150 mg/dL (Less than 100 mg/dL is optimal)
- Serum HDL cholesterol 40-70 mg/dL

- HDL Less than 40 mg/dL in men and less than 50 mg/dL in women increases the risk of heart disease.
- HDL more than 60 mg/dl decreases the risk of heart disease.

- LDL/HDL ratio less than 3 is cardio protective and more than 5 increases the risk.
- Total cholesterol/ HDL ratio should be less than 5:1
 . Ideal is 3.5:1.

Thank you