
Ed Crewe

Using Django for (stop gap)
network automation
management

What is ideal network automation?

It is full software defined networking...

Central master control plane - device agents

Central master config & state database -
 device discovery and / or subscription

Auto conformance of live state to config

Management plane - open config markup

Zero touch provisioning of newly added devices

Dynamic topology generation and reconfiguration

GUI modelling of network topology to live state

Telemetry / status reporting - triggered reconfiguration

Open Daylight - leaf and spine network

The stop gap solution

Fairly static topology generation based on supplied seed hardware
metadata

Dedicated network deployment server (nds) per leaf and spine unit -
receives new config and push code as rpms

Ansible playbooks from rpms pushes vendor specific config to devices

Cronjob for regular reconformance of network

Logging of all push / commit errors from devices

Web GUI to reconcile config artifact (rpm) versions to device push errors

REST API to allow move to more centralised management via nds

Network / NDS status query, reporting and monitoring

 Pros and Cons

Few direct dependencies

Simplicity

Isolation / security

Performance - low latency
of device control plane

Scalability - controller load

Interoperability - vendor
config for older devices

Robust - if nds dissapears
devices still run

Backwards compatibility

Poor central control

No central telemetry of network state

No dynamic configuration

No self healing

Vendor specific code

Redhat family specific

Reliant on build & artifact services

No central data, audit or control

Poor data persistence (reliance on
nds logs)

Django NDS web

Component applications

Network App
1. netconf-generator - creates configs and pushes via ansible
2. netconf-definitions - provides the seed hardware metadata

Web Core
1. ndsweb - core app
2. ndsrest - rest api
3. ndsregion - NDS / leaf and spine unit data

Web Apps
1. ndslog - Ansible push, device error & yum rpm logs
2. emds - job scheduler for device tasks eg. reporting
3. rpmblacklist - software / configuration artifact rollback
4. ndscurrentstate - config status
5. ndsmonitor - server status

Architecture diagram

 Netconf config generation

Regular push conformance of network topology

Build step (on build servers)
● Code takes seed hardware data in yaml validates it into a

temporary database and generates the output topology as
yaml

● Input topology yaml for Ansible tasks with templates for
generating vendor specific leaf & spine device configs, along
with dhcp etc.

● Create push code and config rpm artifacts for deploy to NDS
● Artifact deployment is logged (NDS yum rpm log)

Push step (on NDS)
● Run through the config pushes for all the devices in the unit
● (Juniper / Cisco) Devices have their own internal config

database with commit checking of config changes.

 Ansible push

● Ansible is agent less (SSH based) generic config management
● Uses playbooks of tasks (manifests of modules)
● Uses Python vendor specific modules for optimal config

features / compatibility - eg. Juniper’s junos_eznc
● Pushes out to each device in parallel to check config, update,

commit check and commit
● Device commit failures or other errors reported by devices are

logged by Ansible
● Final summary status of full topology conformance is logged

https://github.com/Juniper/py-junos-eznc

Log parsing

Purpose is to link together topology generation code, config and
deployment repositories with end device errors to allow easy
debugging by network engineers
(Error causes = network changes outside of the unit, load issues
and other infrastructure issues as well as hardware failure)

● Parses standard Ansible CLI style output … so non-log format,
turning it into a series of logs

● Uses django-csvimport in bulk load mode to split data into
various log related models / tables

● Also loads rpm artifact log - artifacts use a naming convention
to allow easy matching to Bamboo deploys, Artifactory object
versions and original Git source code changes of generator
code and configs

https://pypi.python.org/pypi/django-csvimport

Build artifacts / deploy server integration

If errors occur due to code or configuration changes can be
reverted via an artifact blacklisting app.

Integrates with the Bamboo build server which provides a list of
available generator artifacts from artifactory.

Device task scheduler

Status and diagnostic tasks can take time to aggregate from all
devices (a large unit may have hundreds of devices)

So a job scheduler to gather this data asynchronously and then
expose via a REST service is available.

REST API (for central management app)

Nds-rest-framework wraps up the standard log model -> resorce and custom summary resources for use by
central management application (Java based app by another team)
This is all provided by django-rest-framework with django-filters - with the API using its automatic admin UI, but
with a slightly more JSON content exposing stylesheet that integrates it into the web UI look and feel

Server status monitor
https://github.com/k3oni/pydash
(For trend data use sysstats or a newer server telemetry app, eg. Oracle cloud EM)

https://github.com/k3oni/pydash

End to end testing with Docker compose

Triggers the build of all the dependent services for NDS web and
mocks the devices to allow for testing of device pushes, device
fails etc. This is hooked up to Jenkins CI jobs triggered to validate
merge requests (with notifications on slack) …

 Name Command State Ports
--
artifactory-e2e /bin/sh -c /entrypoint-art ... Up 127.0.0.1:8081->8081/tcp
bamboo-e2e /bin/sh -c source /root/.b ... Up 127.0.0.1:8085->8085/tcp
bitbucket-e2e /sbin/tini -- /entrypoint. ... Up 127.0.0.1:7990->7990/tcp,
127.0.0.1:7999->7999/tcp
e2e_ldap /ldap/slapd.sh Up 127.0.0.1:389->389/tcp, 636/tcp
e2e_mysql /entrypoint.sh mysqld Up 127.0.0.1:3306->3306/tcp, 33060/tcp
ndstest_e2e_uspp1_ord12_c1u1 /nds/entrypoint.sh Up 127.0.0.1:44301->443/tcp,
127.0.0.1:55001->80/tcp
ndstest_e2e_uspp1_ord12_tp1 /nds/entrypoint.sh Up 127.0.0.1:44302->443/tcp,
127.0.0.1:55002->80/tcp
netdef-e2e java -jar net-def.jar serv ... Up 127.0.0.1:4010->4010/tcp,
127.0.0.1:4012->4012/tcp
netui-e2e /usr/share/nginx/html/setu ... Up 127.0.0.1:8082->80/tcp
yumrepo-e2e /data/entrypoint.sh Up 127.0.0.1:8880->80/tcp
> Waiting for services to start!
..................

Questions

Talk is linked from the meetup site

https://www.meetup.com/python-dbbug/events/244781627/

Thanks,
Ed Crewe

http://edcrewe.com/

https://www.meetup.com/python-dbbug/events/244781627/

