Gamma-Ray Burst/Supernovae:�a Review
Paolo A. Mazzali
Aspherical Supernovae – INAF-Pa
1
23.-26.10.23
Aspherical Supernovae – INAF-Pa
2
23.-26.10.23
GRB Duration:
Bimodal distribution:
Short-hard v. Long-soft
short
long
Short-hard bursts are produced by NS-NS or NS-BH mergers (see Monday talks)
Most nearby long-soft GRBs come with a Supernova� GRB980425: the optical counterpart
Aspherical Supernovae – INAF-Pa
3
23.-26.10.23
GRB/SNe are Broad-Lined SNe Ic
Aspherical Supernovae – INAF-Pa
4
23.-26.10.23
SN 1998bw / GRB980425
Matheson et al. 2003
Patat et al. 2001
SN2003dh / GRB030329
Stripped-envelope SN: classification
SNe Ib/IIb: amount of He/H
SNe Ic: width (nr) of lines
Aspherical Supernovae – INAF-Pa
5
23.-26.10.23
SNe Ic: meaning of broad lines
🡺Broader-lined SNe have fewer lines
Aspherical Supernovae – INAF-Pa
6
23.-26.10.23
07gr
04aw
97ef
98bw
Core-Collapse SNe�Massive Star (>8M⊙)
🡪 56Ni (~0.1-1M⊙)
Aspherical Supernovae – INAF-Pa
7
23.-26.10.23
H
He
C
O
Si
core
SN Type SN Ic SN Ib IIb SN II
Prog. Star WO WC WN R/BSG
Distribution by subtype
Aspherical Supernovae – INAF-Pa
8
23.-26.10.23
SE SNe:Different LC distributions
SNe Ib/IIb: more homogeneous
On average less luminous
SNe Ic: wider range of Lum
On average more luminous
84 SNe, Prentice et al. 2016
Aspherical Supernovae – INAF-Pa
9
23.-26.10.23
SNe IIb – Ib are a continuum
(Prentice & PM 2017)
Aspherical Supernovae – INAF-Pa
10
23.-26.10.23
It takes little He to make a SN Ib
Aspherical Supernovae – INAF-Pa
11
23.-26.10.23
(Hachinger et al., 2012)
All GRB/XRF SNe are Ic�SNe Ib v. Ic: Helium
Aspherical Supernovae – INAF-Pa
12
23.-26.10.23
Ib
Ic
Ic
2.058µm
1.083µm
Taubenberger et al. 2006
Strongest HeI lines in IR. 1μ can cause confusion, 2μ line unique
Line blending and number of features
Aspherical Supernovae – INAF-Pa
13
23.-26.10.23
Typical N=7 spectrum
N=6 spectra with different velocities
Outer density slope determines line width
Aspherical Supernovae – INAF-Pa
14
23.-26.10.23
PM+ 2017
Refined classification
Presence of H in Ib quite common
50 SNe with good spectral coverage out of 82 SNe with good LC (Prentice & PM 2017)
No trace of He in Ic
Aspherical Supernovae – INAF-Pa
15
23.-26.10.23
Updated distribution by subtype
Aspherical Supernovae – INAF-Pa
16
23.-26.10.23
SN Ic IIb Ib
46% 40% 14%
50 SNe, Prentice & PM 2017
GRB/SNe are luminous
Aspherical Supernovae – INAF-Pa
17
23.-26.10.23
GRB/SNe are highly energetic
Aspherical Supernovae – INAF-Pa
18
23.-26.10.23
after Pian et al. 2006, Nature
Explosion Parameters
Aspherical Supernovae – INAF-Pa
19
23.-26.10.23
Light Curve
Spectra
R
V
R c
κ Mej
1/2
Arnett 1982
Use of line width
Aspherical Supernovae – INAF-Pa
20
23.-26.10.23
SN 1998bw: high mass and KE
Aspherical Supernovae – INAF-Pa
21
23.-26.10.23
Iwamoto et al. 1998
GRB/SNe are all similar �SN 2003dh/GRB030329
SN 2003dh was
almost as bright
and powerful as
SN 1998bw:
KE = 3.8 1052 erg
Aspherical Supernovae – INAF-Pa
22
23.-26.10.23
Mazzali et al. 2003
GRB/SNe are driven by 56NI
Aspherical Supernovae – INAF-Pa
23
23.-26.10.23
SN 2013dx has the lowest Ek �of any GRB(130702A)/SN so far
Mej ~ 9 M◉, Ek ~ 9 1051 erg
M(56Ni) ~ 0.25 M◉
Mej ~ 3 M◉, Ek ~ 1052 erg
M(56Ni) ~ 0.25 M◉
(PM+ 2021)
Aspherical Supernovae – INAF-Pa
24
23.-26.10.23
Aspherical Supernovae – INAF-Pa
25
23.-26.10.23
Spherical
Aspherical
FeII] 5200A
[OI] 6300A
Observed
Aspherical explosion:
line shape depends
on orientation
Orientation 15 deg
GRB
More Ek: 56Ni
Less Ek: Oxygen
Prediction from asphericity: off-axis (GRB?)/SNe
Aspherical Supernovae – INAF-Pa
26
23.-26.10.23
SN 2003jd:
(Subaru and Keck data,
PM + 2005)
Aspherical Supernovae – INAF-Pa
27
23.-26.10.23
an off-axis aspherical SN
How common is asphericity?
Aspherical Supernovae – INAF-Pa
28
23.-26.10.23
Aspherical Supernovae – INAF-Pa
29
23.-26.10.23
Mazzali et al. 2008, Tanaka et al. 2009
HN SN Ib 2008D / XRF 080109
Intermediate mass/energy
SN2008D / XRF080109: the nebular phase
Aspherical Supernovae – INAF-Pa
30
23.-26.10.23
Mazzali et al. 2008, Tanaka et al. 2009
SN2016jca/GRB161219B
One of the best observed GRB/SNe
Ashall et al 2017
Aspherical Supernovae – INAF-Pa
31
23.-26.10.23
SN2016jca/GRB161219B
Higher velocities than 1998bw, UV suppressed: more Ni
Early data allow better models: increasing O ab. at low velocities, indicative of aspherical props.
Aspherical Supernovae – INAF-Pa
32
23.-26.10.23
Ashall et al. 2017
SN 2016jca: more 56Ni early on: head-on Fe jet
As time passes, see deeper into aspherical ejecta
Aspherical Supernovae – INAF-Pa
33
23.-26.10.23
O-rich
Ni-rich
GRB jet
Modelling results
Aspherical Supernovae – INAF-Pa
34
23.-26.10.23
Ek and Mej seem to be correlated, 56Ni less so
Props of SNe Ibc as f(prog. mass)
Aspherical Supernovae – INAF-Pa
35
23.-26.10.23
A minimum mass and energy seem to be required for GRBs
What is the “driving force”?�Compare energies of GRBs and SNe
Aspherical Supernovae – INAF-Pa
36
23.-26.10.23
SN kinetic energy always dominates, and it is close to the maximum expected magnetar energy (PM+2014)
SN GRB
GRB+SN
GRB
GRB+SN
GRB
A Magnetar in SN Ib 2005bf?
SN 2005bf (Tominaga et al. 2007) showed a bright, late 2nd LC peak
Magnetar activity may have been responsible for the rebrightening (Maeda et al. 2007)
Aspherical Supernovae – INAF-Pa
37
23.-26.10.23
A magnetar in XRF/SN bl-Ic 2006aj?
Aspherical Supernovae – INAF-Pa
38
23.-26.10.23
SN2006aj, a BL-SN Ic, dimmer than GRB/SNe (98bw, 03dh, 03lw)
M(56Ni) ~ 0.2M⊙
Difficult to produce a lot of 56Ni from a small mass core.
Remnant likely a NS
Extra energy from Magnetar?
SN2006aj: intermediate M, KE
Aspherical Supernovae – INAF-Pa
39
23.-26.10.23
Mazzali et al. 2006
SLSNe and ULGRBs?
Consistent with Magnetar powering
Are all luminous SNe magnetars? Greiner et al 2015, Nature
Aspherical Supernovae – INAF-Pa
40
23.-26.10.23
Non-thermal spectra of SLSNe-I
“peculiar” OII lines are result of non-thermal excitation/ionization at high Temp
HeI lines appear via same process only later, when Temp is “right” (lower) (PM+2016)
Aspherical Supernovae – INAF-Pa
41
23.-26.10.23
Composition
Aspherical Supernovae – INAF-Pa
42
23.-26.10.23
06D4eu PTF13ajg
Most lines are C/O, Int. Mass or Fe-group elements, as in SNe Ic
(He visible late sometimes) (PM+2016)
The OII ion
Optical OII lines come from lower levels with higher excitation energy than HeI (>22eV).
Not thermally excited
Aspherical Supernovae – INAF-Pa
43
23.-26.10.23
Velocity evolution: SNe Ic v. SLSNe
Aspherical Supernovae – INAF-Pa
44
23.-26.10.23
Comparing properties
Aspherical Supernovae – INAF-Pa
45
23.-26.10.23
| Mej (M◉) | Ek (1051erg) | Ek/Mej | | Mej (M◉) | Ek (1051erg) |
SNe Ic-7,6,5 | 1-4 | 1-4 | ~1 | SLSNe-”I” | 5-40 | 5-40 |
SNe Ic/BL | 4-8 | 4-20 | 1-2 | | | |
GRB/HNe | 8-12 | 20-50 | 3-5 | ULGRB/SN | 2-3 | 5-8 |
Comparing SNe Ib/c and SLSNe-I
Aspherical Supernovae – INAF-Pa
46
23.-26.10.23
In SNe Ib/c, correlation between ejected mass and both 56Ni mass and Kin En
SLSNe cover similar Ek range, may have larger Mej and have typically lower E/M (ULGRB/SN is the exception). Little info on M(56Ni).
Origin of two groups could be similar.
Magnetar parameters?
Aspherical Supernovae – INAF-Pa
47
23.-26.10.23
GRB/SNe
XRF/SNe
SLSN-”I”
SN2005bf
SN2011kl-GRB111209
After Metzger+ 2015
A Grand Scheme
Aspherical Supernovae – INAF-Pa
48
23.-26.10.23
A possible scenario
Aspherical Supernovae – INAF-Pa
49
23.-26.10.23