Automatic Human Body Part Segmentation
Bachelor Thesis
Author: Jakub Toma
Supervisor: Mgr. Dana Škorvánková 2022
Aim of the Thesis
2
Neural network
Input data
Output segmentation
Motivation
3
UBC3V Dataset
4
https://arxiv.org/abs/1605.08068
Data Preprocessing
5
Down-sampling
Annotation
Original point cloud
Down-sampled point cloud
Annotated down-sampled point cloud
Adapted Alexnet
6
Layers | Parameters | Activation |
conv_1 | Convolution (k=11, s=4, o=32) + Batch Normalization | ReLU |
pool_1 | MaxPooling (pool_size=3, s=2) |
|
conv_2 | Convolution (k=5, s=1, o=64) + Batch Normalization | ReLU |
pool_2 | MaxPooling (pool_size=3, s=2) |
|
conv_3 | Convolution (k=3, s=1, o=64) + Batch Normalization | ReLU |
conv_4 | Convolution (k=3, s=1, o=128) + Batch Normalization | ReLU |
conv_5 | Convolution (k=3, s=1, o=128) + Batch Normalization | ReLU |
pool_3 | MaxPooling (pool_size=3, s=2) |
|
conv_6 | Convolution (k=6, s=1, o=256) + Dropout (0.2) | ReLU |
conv_7 | Convolution (k=1, s=1, o=256) + Dropout (0.2) | ReLU |
conv_8 | Convolution (k=1, s=1, o=128) | ReLU |
upfeat_1 | Deconvolution (k=4, s=2, o=128) |
|
upfeat_1 | Deconvolution (k=2, s=2, o=64) |
|
upfeat_1 | Deconvolution (k=2, s=2, o=64) |
|
upfeat_1 | Deconvolution (k=4, s=4, o=32) + Cropping |
|
score | Convolution (k=1, s=1, o=46) | Softmax |
Adapted Alexnet architecture
Training & Evaluation
7
Two Pairs: Ground truth & Predicted segmentation
PointNet
8
PointNet architecture
Training & Evaluation
9
Ground truth
Predicted segmentation
Summary
10
Model Architecture | Overall Accuracy |
Shafaei16 – Net 3 | 80.6% |
Ours – Adapted Alexnet | 82.2% |
Ours – PointNet | 85.4% |
Limitation
background
11
Future Work
Opponent’s Questions
12
Supervisor’s Questions
13
Thank you for your attention
14