
HTLC-DASH:
Micropayments for Decentralized Media

Streaming

Laolu Osuntokun
roasbeef@lightning.engineering

@roasbeef
Lightning Labs

Building Decentralized Apps 09/20/2017

http://twitter.com/roasbeef

Bitcoin Payments Today

● All participants connected
to global network

● All payments broadcast to
all other participants

● Each payment must be fully
verified

● Drawbacks:
○ Scalability limitations of global

broadcast network
○ Each node does work even if

not involved in payment
○ Public record of each

payment kept for ALL TIME

Payments With Lightning
● Enter Lightning: Off-Chain Bitcoin payments

● Alice and Bob enter into a contract
● Contract creation:

○ Funds put into 2-of-2 multi-sig
○ Before broadcast transaction to deliver

funds is signed
■ Requires malleability fix

○ Funding transaction broadcast
● Off-chain payments (sub-contract):

○ HTLC: Hash-Time-Lock-Contract
● Contract completion:

○ Closing transaction broadcast, final
balance delivered

● On-chain footprint:
○ 2 transactions
○ All updates point-to-point
○ Predictable fees

The Holy Hash-Time-Locked Contract
● Specific implementation of generic: “claim-or-refund” functionality

○ Conditional payment upon reveal of witness

● The Hash-Time-Locked-Contract (HTLC)
○ Set up: receiver gives sender H = Hash(R), where R <-$ {0, 1}^n
○ Conditions: “I will pay you N BTC, iff you present R s.t Hash(R)== H”
○ Escape hatches: “If you don’t within T days, I get my money back”

● Enables end-to-end secure multi-hop payments through untrusted
intermediaries!
○ Able to connect payment channels (tubes of money)

● Payment from Alice to Dave via existing channels
○ A -> B -> C -> D (Clear: balances get decremented, funds in limbo)
○ A <- B <- C <- D (Settle: balances get incremented, forwarders credited)

lnd- The Lightning Network Daemon

● One of many in-progress Lightning implementation:
○ Code (for lnd): https://github.com/lightningnetwork/lnd/
○ Spec: https://github.com/lightningnetwork/lightning-rfc/
○ Uses the btcsuite (a.k.a btcd) set of Bitcoin libraries

● Developed by Lightning Labs
○ Lead developer: roasbeef (the speaker!)

● Latest release: v0.3-alpha
○ Feature complete LN implementation

■ Able to: manage all channel states, passively forward, validate graph, onion payments,
etc.

○ Release features:
■ Macaroon based authentication
■ --autopilot mode (!!)
■ Light client mode (neutrino)
■ Spec compliance

https://github.com/lightningnetwork/lnd/
https://github.com/lightningnetwork/lightning-rfc/
https://github.com/btcsuite/btcd

Lightning as an Application Platform

● API of Layer-2 much simpler the raw base layer:
○ OpenChannel(nodeKey, amt, pushAmt) -> Some(chanPoint)
○ CloseChannel(chanPoint, force=false) -> bool

 where chanPoint = txid:index
○ Pay(payReq, dest=nodeKey, hash=payHash, amount=n) -> Some(route)

 Where route details path through network, total fees, etc
○ Req(amt, memo, fallBackAddr) -> payReq

● Developer Resources:
○ Overview, tutorials, example applications: http://dev.lightning.community/
○ Comprehensive documentation of lnd’s gRPC interface: http://api.lightning.community/

● Application platform for intelligent agents
○ Machine-to-machine payments
○ Micropayment preference agents
○ Channel liquidity optimizers
○ Forwarding profit optimizers

http://dev.lightning.community/
http://api.lightning.community/

MPEG-DASH: Overview

● Industry standard for adaptive bitrate streaming:
○ DASH: Dynamic Adaptive Streaming over HTTP
○ HTTP used as transport layer for meta-data + streaming chunks
○ Widely used for pre-stored and live streaming

● Core components:
○ Segment:

■ Encoded time-slice of media (2s - 10s)
○ Media Presentation Description (MPD)

■ Describes timeline of segments at various bit-rates
○ Dash Client

■ DASH Control Engine
■ Samples bandwidth, figures out which segments to play

○ Media HTTP Server
■ Serves the MPD
■ Stores pre-encoded segments or generates in real-time (live streaming)

MPEG-DASH: Overview

MPEG-DASH: Segments
● Typically from 2s to 10s

○ Lower segment size:
■ +High switching granularity
■ +Suited for live
■ -Large number of files

○ Higher segment size:
■ +Small number of files
■ +More cacheable

■ -Not well suited for live

● Workflow:
○ Client fetches segments to ensure

adequate buffer
○ If bandwidth changes: request

higher/lower quality to compensate
○ How YouTube is able to scale quality based

connection quality

HTLC-DASH: Overview

● Lightning + MPEG-DASH + Decentralized Segment Storage = 💗
○ Create a decentralized marketplace for media streaming!
○ Replaces adverts when watching videos online!!!

● Lightning + MPEG-DASH
○ Extend the MPD to include pricing information

■ Larger segment (higher quality) -> higher price
○ HTTP server responds w/ error code 402 (payment required) if segment not paid for
○ DASH Client able to factor in user preferences when fetching segments

● MPEG-DASH + DSS:
○ MPD Server need not have all data locally
○ Instead can fetch from independent sources in decentralized manner
○ Incentives to cache popular content locally, possible proxy-fetching and re-server
○ Agent in decentralized marketplace for media

HTLC-DASH: Overview

HTLC-DASH: Payment Required

● Enforce payment w/ proxy in-front of DASH Client + Lightning Server
○ Served MPD now has satoshi-granularity pricing for segments

■ Proxy intercepts, generates mapping
○ Server grants client anonymous credential to be used as salt
○ HTTP 402 Payment Required returned by default
○ Lightning Proxy will intercept requests and proxy responses

■ Uses Lightning to pay server for fragment!

● Strawman Approach
○ Payment for segment exchange dilemma

■ Who goes first? Pay then send, or send then pay?

● Atomic Exchange w/ HTLC’s
○ Enforce atomic exchange via HTLCs!
○ Payment hash is segment content hash:

■ Claim of payment reveals segment

HTLC-DASH: Storage Backend

● DSS Server doesn’t need all content locally
○ Able to dynamically fetch from independent sources
○ Possibly will pay upstream DSS, resell to down stream clients

● HTLC-DASH servers participate in incentivized media serving marketplace
○ Availability, reliability, diversity of content make providers more attractive
○ Servers become aggregators of desirable content

● Possible sources:
○ Blockstack
○ DHT
○ Bittorrent (littorrent)

■ Re-use merkle-tree of infohash content in HTLC’s
■ New version of Bittorent switching to SHA-256 (due to SHA-1 break)

○ DDS Federation
■ Dynamically share content amongst each other

HTLC-DASH: Alternative Advanced Implementations

● 1:1 segment hash to payment hash mapping not feasible
○ Due to limitations in Bitcoin Script segment size may be too large

■ 5s segment of 10Mbps -> 5MB
○ Solution?

■ Merkle Trees!
■ Add ability to validate merkle tree branches to Script
■ Commitment txn has 100’s of HTLC’s, settled in parallel

● Exchange Non-Interactive Zero Knowledge Proof of Segment Knowledge
○ NIZKPoSK (kek), server proves to client that has segment:

■ Enables client to not enter into contract unless server can deliver
■ Eliminates nuisance server attack (funds in limbo, but it’s satoshis!)

○ ZKBoo
■ “MPC-in-the-head” based NIZKP
■ Proof generated in ms (for our case)
■ Amenable to real-time ZKCP’s (zero knowledge contingent payments)

https://eprint.iacr.org/2016/163.pdf

HTLC-DASH: Challenges

● Latency, latency, latency
○ DASH client needs to be able to maintain sufficient video buffer

■ Otherwise, video pauses, annoyed user
○ Decentralized fetching may introduce prohibitive latencies

■ Client can prefer providers with lower latency, providers use IP Anycast
○ Client can be more aggressive in pre-fetching further in stream

● Update speed on Lightning side
○ Lightning Commitment Protocol (LCP) optimized for pipelined, batched updates
○ 1.5 RTT’s required for full update with current bi-di channels

■ 1000’s of HTLC’s able to settled+cleared in a single update
○ Can transition to uni-directional channels, for lower latency updates

■ Only requires 0.5 RTT for a payment, may require reset if imbalanced

Extending HTLC-DASH Clients w/ Intelligent Agents

● HTLC-DASH client can factor in user preferences:
○ Able to factor in attributes to make more intelligent fetching decisions
○ Can surveil market in real-time to locate best price

■ Also will need to factor in latency to media server, etc

● Examples:
○ Give agent budget of X BTC, able to throttle segment quality based on budget
○ Dynamically scale up/down bit-rate based on content (dark scenes don’t need high bitrate!)
○ Podcast requires lower bitrate compared to music (hi-fi, FLAC, etc)

● Agent able to factor in relevant attributes and user preferences
○ Reduces mental txn costs for micropayment systems
○ Micropayment and Mental Transaction Costs by Nick Szabo (MUST READ!)

http://nakamotoinstitute.org/static/docs/micropayments-and-mental-transaction-costs.pdf

Lightning Labs is Hiring!

Think HTLC-DASH is cool?

● 👀 out for the code!

https://angel.co/lightning/

Looking for:

● Crypto Protocol Engineer
● Frontend Engineer

Contact: roasbeef@lightning.engineering

https://angel.co/lightning/

