1 of 2

v)

cos A – sin A + 1

cos A + sin A – 1

=

cosec A + cot A,

Proof:

L.H.S

=

cos A – sin A + 1

cos A + sin A – 1

=

cot A

1

cosec A

+

cot A

1

cosec A

+

cot A

cosec A

+

=

(

)

(

1

+

cot A

cosec A

)

cos A

sin A

cos A

+

sin A

+

1

=

sin A

sin A

sin A

sin A

sin A

(cosec2A – cot2A)

1

EXERCISE 8.4

Q.5) Prove the following identities where the angles involved

are acute angles for which the expressions are defined.

sin A

using cosec² A = 1 + cot² A.

 

 

cosec2θ – cot2θ = 1

[Dividing numerator and denominator by sin A]

2 of 2

v)

cos A – sin A + 1

cos A + sin A – 1

= cosec A + cot A

EXERCISE 8.4

Q.5) Prove the following identities where the angles involved

are acute angles for which the expressions are defined.

using cosec² A = 1 + cot² A.

=

cot A

cosec A

+

(

)

cosec A

cot A

+

(

)

cosec A

cot A

(

)

(

1

+

cot A

cosec A

)

=

cotA

cosecA

+

(

)

(

1

cosecA

+

cotA

)

(

1

+

cot A

cosec A

)

=

cot A

+

cosec A

L.H.S. = R.H.S.

cos A – sin A + 1

cos A + sin A – 1

= cosec A + cot A

Proof:

cot A

cosec A

+

=

(

)

(

)

(

1

+

cot A

cosec A

)

cosec2A – cot2A

a2 – b2 = (a + b) (a – b)

=

cosec A

cot A

+

(

)

[1 –

(cosec A

cotA)]

1

+

cot A

cosec A