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Decision trees part 2

The following slides are based on the 
interactive tutorial

“Model Tuning and

the Bias-Variance Tradeoff” 

by R2D3

http://www.r2d3.us/visual-intro-to-machine-learning-part-2/
http://www.r2d3.us/visual-intro-to-machine-learning-part-2/
http://www.r2d3.us/visual-intro-to-machine-learning-part-2/
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Bias-Variance tradeoff

● Goal of modeling:  

○ approximate real-life situations 
by identifying and encoding rules 
in data. 

● Models make mistakes if those 
patterns are 

○ overly simple or 

○ overly complex.

● In Part 1, we created a model that 
distinguishes homes in San 
Francisco from those in New 
York. 

● Now, we'll talk about tuning and 
the Bias-Variance tradeoff.
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Model parameters

● Models can be adjusted to change 
the way they fit the data. 

● These 'settings' are called (hyper-) 
parameters. 

● An example of a decision-tree 
parameter is the minimum node 
size, which regulates the creation of 
new splits.
○ A node will not split if the number 

of data points it contains is below 
the minimum node size.

● The tree from Part 1 had a 
minimum node size of one. 

● It was very complex, had lots of 
splits, and overfit the data. 

● To see why, let’s revisit how the 
decision tree was trained.
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Overly simple decision tree: a stump

● The simplest version of a 
decision tree is called a stump. 

● Comprised of a single split, 
stumps are comprised of a single 
rule, such as 

○ “Every house whose elevation is 
above 34 feet is in San 
Francisco, 

and all others are in New 
York.”
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Overly simple models suffer from bias

● Stumps take a binary view to the 
world and ignore complexity and 
nuance in the training data. 

● This black-and-white 
interpretation of the world is 
prone to errors due to bias.
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Overly simple

● A model with too much bias 
systematically ignores relevant 
details and is wrong in 
consistent ways. 

● The stump incorrectly classifies 
all lower-elevation homes in San 
Francisco.



Prof. Dr. Jan Kirenz

A decision tree with  many splits

● To decrease the error due to bias, 
you can add additional splits to 
the tree
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Overly complex?

● Additional splits allow the tree to 
take into account more 
complexity. 

● You can add splits until a tree's 
leaf nodes contain only homes in 
either San Francisco or New York.
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The question is, 
how does it 

perform on the 
test data?
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Overly complex: high variance

Test-error rate: 12%.

● Overly-complex trees suffer from 
errors due to variance.

● High-variance models make 
mistakes by overfitting to the 
idiosyncrasies of the training 
data. 

● They tend to be wrong in 
inconsistent ways
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A tangible example of variance

● Follow the creation of a single 
leaf node:

○ This leaf node is the result of 
eight separate forks (A to H). 

○ Each fork divides the data set 
into smaller subsets, until the 
leaf node contains a single San 
Francisco home.
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Overfitting leads to bad generalization

● If terminal nodes were made 
using very little data

● It's no surprise that the 
generalizations they make are 
incorrect. 

● Patterns drawn from two homes 
are more likely to be flukes than 
anything real
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How to address overfitting?

● We could impose limits on how a 
tree grows by changing the 
minimum-node-size threshold.

As the minimum-node-size threshold 
increases, there are fewer splits. 

The trees get less bushy.
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Model complexity and model error

● The relationship between a 
parameter like minimum node 
size and model error illustrates 
the tradeoff between bias and 
variance more explicitly.
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Model with low complexity and high bias

● When a model is less complex, it 
ignores relevant information, and 
error due to bias is high.

● As the model becomes more 
complex, error due to bias 
decreases.
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Bias vs variance

● When a model is less complex, 
error due to variance is low. 

● Error due to variance increases 
as complexity increases.
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Bias and variance

Source: Raschka, S. (2016): Model evaluation, model selection, and algorithm selection in machine learning

https://sebastianraschka.com/blog/2016/model-evaluation-selection-part2.html
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Overall model error

● Overall model error is a function 
of error due to 

○ bias plus error due to variance. 

● The ideal model minimizes error 
from each.
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Single decision trees are not ideal

● Even at their optimal depth, 
single decision trees aren’t the 
best performing models. 

● While trees are very easy to 
understand, the world is more 
complex than a bunch of if-then 
statements.

● Nevertheless, decision trees can 
be used in aggregate (as so 
called ensembles) to yield very 
strong results. 


