
Kotlin Coroutines

Hossein Gheisary

2

Kotlin Coroutines

● Asynchronous Programming

● Introduction to Kotlin Coroutines

● Best Practices In Android

● Structural concurrency

3

Async Programming

● Efficiency

● more advanced features

● parallel operation & concurrent operation

● Threads, AsyncTasks, RxJava, Coroutine , ….

networking

database

 leaks

memory overhead

 Switching time

4

Threads

Process

Thread

Thread

Thread

Thread

5

Threads

● A flow of execution

● whenever you run a

java program.

● Thread switching is heavy & has memory overhead

The main thread will

create

6

Threads

What is Thread ?

7

Threads

1- Thread is a class

2- Object from Thread class (Heap & Stack memory allocation)

3- Call run(start) method

4- Jvm communicate with OS scheduler to get cpu turn

8

Introduction To Kotlin Coroutines

Coroutines

9

Kotlin Coroutines

● Multiple coroutine can run
on one thread

● A coroutine is not bound to any

particular thread.

● may suspend execution in one

thread and resume in another.

10

Kotlin Coroutines

Coroutines

thread

suspended

Computation can be suspended without blocking thread

Save State + Data Retrieve data

11

Kotlin Coroutines

● Suspend and resume concept

● Unlike threads, don’t need a lot of memory, just some bytes.

● Coroutines have been stable since Kotlin 1.3 (October 2018)

12

Kotlin Coroutines

Coroutines Builders

13

Coroutines Builders

Async

Launch

14

Coroutines Builders

Coroutine Scope

Coroutine Context

Coroutine Job

Suspend Function

15

Kotlin Coroutines

Suspend

16

Suspend

● how the code can suspend without blocking threads ?

● why a suspend function won’t return until all the work that it started has
completed ?

● what the compiler does under the hood ?

17

Suspend

● Kotlin compiler will create a state machine for every suspend function

● Regular function

● When a coroutine suspend

● When the suspension is over, the coroutine resumes on a free thread in the pool.

Suspend & Resume

Suspension Points

The current stack frame copy and save

The return to its pool

18

Suspend

Under The Hood

19

Suspend

suspend fun

20

Using Continuation

21

Using Continuation

22

Suspend

● how the code can suspend without blocking threads
 it knows from where to continue after execution

● why a suspend function won’t return until all the work that it started
has completed
 Continuation object (switch-case)

● what the compiler does under the hood

23

Using Continuation

● Continuation is a public interface

● Can convert the callback-based API into a suspendable function

24

Using Continuation

25

Coroutine Scope

Suspend Function

Kotlin Coroutines

26

Kotlin Coroutines

Coroutine Scope

27

Coroutine Scope

● Start and control the lifecycle of coroutines in a particular layer of your app.

● Examples: viewModelScope and lifecycleScope

● Takes a CoroutineContext as a parameter

● The coroutine context is a set of rules and configurations that define how the
coroutine will be executed. (ex: which thread)

https://developer.android.com/reference/kotlin/androidx/lifecycle/package-summary#(androidx.lifecycle.ViewModel).viewModelScope:kotlinx.coroutines.CoroutineScope
https://developer.android.com/reference/kotlin/androidx/lifecycle/package-summary#lifecyclescope

28

Coroutine Scope

View ViewModel UseCase Repo Remote

fun getData() {
 scope.launch{
 usecase.getData()
 }
}

suspend fun getData(){
 repo.getData()
}

suspend fun getData(){
 remote.getData()
}

@GET
suspend fun getData()viewModel.getData()

29

Coroutine Scope

Coroutine Context

Suspend Function

Kotlin Coroutines

30

Kotlin Coroutines

Coroutine Context

31

Coroutine Context

32

Coroutine Scope

33

Coroutine Scope

34

Kotlin Coroutines

Job

35

Job

● lifecycle, cancellation, and parent-child relations

36

Job

Parent-Child Relationship

37

Parent-Child Relationship

38

Job

JOB

SUPERVISOR
JOB

Parent Job cancel All children cancel

One child fail Parent Job cancel

One child fail Nothing happen

Parent Job cancel All children cancel

39

Job

40

Job

41

Structured Concurrency

every time our control splits into multiple concurrent paths, we make sure they join up again

child operations are guaranteed to complete before their parents

no child operation is executed outside the scope of a parent operation

1. When a scope cancels, all of its coroutines cancel.

2. When a suspend fun returns, all of its work is done.

3. When a coroutine errors, its caller or scope is notified.”

Example : ViewModelScope

42

Structured Concurrency

43

Structured Concurrency

The structured concurrency is broken

44

Coroutine Exception Handler

Coroutine Exception Handler

45

Coroutine Exception Handler

Created by launch

Created by async

We have uncaught exceptions

always catches all its exceptions and We don't have uncaught exceptions.

Needs try-catch

46

Canceling coroutine

Canceling coroutine

47

Canceling coroutine

Coroutines handle cancellation by throwing a special exception: CancellationException

isActive - withContext - delay - …

If we just call cancel, it doesn’t mean that the coroutine work will just stop.

48

Kotlin Coroutines

Flow

SharedFlow

StateFlow

49

Hot & Cold

Kotlin Coroutines

50

Hot & Cold

Observable Subscriber

● Single/Flowable…

● Flow/stateFlow/SharedFlow

● observe/subscribe

● collect

51

Hot & Cold

Cold
Observable Subscriber 1

Cold
Observable Subscriber 2

Hot
Observable

Subscriber 1Subscriber 2

Subscriber 4Subscriber 3

52

Hot & Cold

Flow

SharedFlow &

StateFlow

53

 A sequence of values that can be asynchronously computed and delivered over time

Flow & Shared-Flow & State-Flow

Flow

Shared-Flow

Allows multiple collectors to listen to the same stream of data independently.

State-Flow

stores the last state(most recent value) and emits it to all it's collectors

54

Flow & Shared-Flow & State-Flow

- Broadcast a value to multiple collectors

- Multiple subscribers to the same stream of data.

- Represents a state
holding a single value at a time

 the most recent value is retained and immediately

emitted to new collectors.

- Store a certain number of previously emitted values

- Single source of truth for a state

- Automatically update all the collectors with the latest state

55

Flow & Shared-Flow & State-Flow

SharedFlow

StateFlowLive Datas (Stock price)

Event bus

Chat Messaging App

SharedFlow

56

57

Best Practices In Android

Inject Dispatchers

Suspend functions should be safe to call from the main thread

The ViewModel should create coroutines

Don't expose mutable types

The data and business layer should expose suspend functions and Flows

Creating coroutines in the business and data layer

Avoid GlobalScope

Make your coroutine cancellable

58

Inject Dispatchers

testing easier as you can replace those dispatchers in unit and instrumentation tests with a

test dispatcher

https://developer.android.com/kotlin/coroutines/coroutines-best-practices#test-coroutine-dispatcher

59

Suspend functions should be safe to call from the main thread

60

The ViewModel should create coroutines
● Views shouldn't directly trigger any coroutines to perform business logic

● your coroutines will survive configuration changes automatically

● Views should trigger coroutines for UI-related logic

61

Don't expose mutable types

62

The data and business layer should expose suspend functions and Flows

Classes in these layers should expose suspend functions for one-shot calls and Flow to notify about data changes.

63

Creating coroutines in the business and data layer
If the work to be done is relevant as long as the app is opened, and the work is not bound to a particular screen, then the work
should outlive the caller's lifecycle.

externalScope should be created and managed by a class that lives longer than the current screen, it could be
managed by the Application class or a ViewModel scoped to a navigation graph.

64

Creating coroutines in the business and data layer

Example: Driver Optimistic NPS

65

Creating coroutines in the business and data layer

Example Of injecting external scope : Driver Optimistic NPS

66

Avoid GlobalScope

● Makes testing very hard as your code is executed in an uncontrolled scope,

you won't be able to control its execution.

67

Make your coroutine cancellable

68

Steps

Thanks!

