e | APSI

Kotlin Coroutines

Hossein Gheisary

Kotlin Coroutines

e Asynchronous Programming

e Introduction to Kotlin Coroutines

e Structural concurrency

e Best Practices In Android

Async Programming

networking
e more advanced features 4 database

e parallel operation & concurrent operation

e Threads, AsyncTasks, RxJava, Coroutine,

_____——— memory overhead

\ leaks

e Efficiency

Switching time

Threads

=

/ \ Thread
Process

\ / Thread

-

Threads

e A flow of execution

e whenever yourun a The main thread will

java program. create

e Thread switching is heavy & has memory overhead

Threads

What is Thread ?

Threads

1- Thread is a class

2- Object from Thread class (Heap & Stack memory allocation)

3- Call run(start) method

4- Jvm communicate with OS scheduler to get cpu turn

Introduction To Kotlin Coroutines

Coroutines

Kotlin Coroutines

e Multiple coroutine can run
on one thread

e A coroutine is not bound to any

particular thread.

e may suspend execution in one

thread and resume in another.

Thread

Thread

Thread

X

Y

Z

(o) | | |

Kotlin Coroutines

Computation can be suspended without blocking thread

suspended

Save State + Data - Retrieve data

—

thread

Coroutines

10

Kotlin Coroutines

e Coroutines have been stable since Kotlin 1.3 (October 2018)

e Unlike threads, don’t need a lot of memory, just some bytes.

e Suspend and resume concept

n

Kotlin Coroutines

Coroutines Builders

12

Coroutines Builders

Launch

Async

suspend fun test(){
val scope = CoroutineScope(Dispatchers.I0)

val job = scope.launch {

Wo K

¥

val deferred = scope.async {

}

deferred.await()
job.join()
}

13

Coroutines Builders

fun test(){
val scope =Forout'LneScopeIDispatchers.IO'

val = scope.launch {

Suspend Function

Coroutine Scope

} Coroutine Context

val deferred = scope.async {

‘ Coroutine Job

deferred.await()
job.join()

}

14

Kotlin Coroutines

Suspend

15

Suspend

e how the code can suspend without blocking threads ?

e why a suspend function won’t return until all the work that it started has
completed ?

e what the compiler does under the hood ?

16

Suspend

Suspend & Resume

Regular function

Suspension Points

The current stack frame copy and save

When a coroutine suspend

The return to its pool

When the suspension is over, the coroutine resumes on a free thread in the pool.

Kotlin compiler will create a state machine for every suspend function

17

Suspend

Under The Hood

18

Suspend

suspend fun loginUser(id:String, password:String):User {
val user : remoreDatasource.login(id, password)
val userEntity = localDatasource.login(user)

return userEntity

suspend fun

fun loginUser(id:String, password:String, completion: Continuation<Any?>):User {
s Val user : remoreDatasource.login(id, password)
=) Val userEntity = localDatasource.login(user)
mmmm) return completion.resume(userEntity)

Iy

Using Continuation

fun loginUser(id:String, password:String, completion: Continuation<Any?>):User {
when(label){
0 > {
remoreDatasource.login(id, password)
}
1 ->{
localDatasource. login(user)
b
2 > {
completion.resume(userEntity)

else -> throw IllegalStateException()

20

Using Continuation

when(continuation.label) {
0 > {
continuation.label =1
userRemoteDataSource.logUserIn(userId!!, password!!, continuation)

}
1 > {
continuation.user = continuation.result as User
continuation. label = 2
userLocalDataSource.logUserIn(continuation.user, continuation)
}
2 > {
continuation.userDb = continuation.result as UserDb
continuation.cont.resume(continuation.userDb)

}
else -> throw IllegalStateException(...)

Suspend

e how the code can suspend without blocking threads
it knows from where to continue after execution

e Wwhy a suspend function won't return until all the work that it started

has completed
Continuation object (switch-case)

e what the compiler does under the hood

22

Using Continuation

public interface Continuation<in T> {

public val context: CoroutineContext
public fun resumeWith(result: Result<T>)

e Continuation is a public interface

e Can convert the callback-based API into a suspendable function

23

Using Continuation

fun fetchData(callback: (String -> Unit)){

fetchData {

callback("sample result")

}

suspend fun fetchDataSuspend() = suspendCoroutine { continuation ->
fetchData {
continuation.resume(it)

}

val result = fetchDataSuspend()

Kotlin Coroutines

Fozpene]ron testiag
val scope =ForoutineScopeIDispatchers.IO)

val job = scope.launch {

}
val deferred = scope.async {
X

deferred.await()
job.join()

}

Suspend Function

Coroutine Scope

25

Kotlin Coroutines

Coroutine Scope

26

Coroutine Scope

e Start and control the lifecycle of coroutines in a particular layer of your app.
e Takes a CoroutineContext as a parameter

e The coroutine context is a set of rules and configurations that define how the
coroutine will be executed. (ex: which thread)

e Examples: viewModelScope and lifecycleScope

27

https://developer.android.com/reference/kotlin/androidx/lifecycle/package-summary#(androidx.lifecycle.ViewModel).viewModelScope:kotlinx.coroutines.CoroutineScope
https://developer.android.com/reference/kotlin/androidx/lifecycle/package-summary#lifecyclescope

Coroutine Scope

View ViewModel UseCase Repo Remote

@GET
fun getData() { suspend fun getData(){ suspend fun getData(){ suspend fun getData()

scope.launch{ repo.getData() remote.getData()
usecase.getData() } }

}
}

viewModel.getData()

28

Kotlin Coroutines

Fozpene]ron testiag
val scope =Forout"LneScopeIDispatchers.IO'

val job = scope.launch {

}

val deferred = scope.async {
} ;
deferred.await()

job.join()

}

Suspend Function
Coroutine Scope

Coroutine Context

29

Kotlin Coroutines

Coroutine Context

30

Coroutine Context

val dispatcher = Dispatchers.Main ¢
val job = Job() <

val exceptionHandler = CoroutineExceptionHandler() <

val scope = CoroutineScope(dispatcher + job + exceptionHandler)

3]

Coroutine Scope

fun CoroutineScope(context:CoroutineContext) : CoroutineScope = {..}

interface CoroutineContext {
operator fun plus(context:CoroutineContext) : CoroutineContext =

32

Coroutine Scope

interface Job : CoroutineContext {}

public actual object Dispatchers {
val Main = MainDispatcherLoader.dispatcher

abstract class MainCoroutineDispatcher : CoroutineDispatcher() {}

class CoroutineDispatcher : AbstractCoroutineContextElement(ContinuationInterceptor) {}

abstract class AbstractCoroutineContextElement() : Element

interface Element : CoroutineContext {}

33

Kotlin Coroutines

Job

34

Job() / SupervisorJob()
Llaunch {..}

lifecycle, cancellation, and parent-child relations

35

Job

Parent-Child Relationship

val scope = CoroutineScope(Dispatchers.IO) l Scope Job

val jobl scope.launch{...} ////’///////[~\\\\\\\\\\\\
4

val job2 scope.launch{...}

Job 1 l Job 2 l Job 3

val job3 scope.launch{...}

Parent-Child Relationship

000 l Scope Job

val scope = CoroutineScope(Dispatchers.IO)

val job = scope.launch {

val jobl scope.launch {...}

Job

val job2 scope.launch {...}

val job3 scope.launch {...}

Job 2

37

Job

Parent Job cancel All children cancel

One child fail Parent Job cancel

Parent Job cancel All children cancel
SUPERVISOR

JOB One child fail Nothing happen

38

Job

val scope = CoroutineScope(Dispatchers.I0)
val jobl = scope.launch {
launch {
mmmm) delay(300)
Log.i("CoroutineTest", "hello jobl child")

}
mmmm) Log.i("CoroutineTest", "hello jobl")
throw error("throwing IllegalStateException')
}
jobl.invokeOnCompletion {
Log.i("CoroutineTest", "jobl complete. $it")

Output:

hello jobl

39

Job

val exceptionHandler = CoroutineExceptionHandler { coroutineContext, throwable -
Log.i("CoroutineTest", "$coroutineContext $throwable")

val scope = CoroutineScope(Dispatchers.I0 + exceptionHandler)
val jobl = scope.launch {
launch {
delay (300)
Log.i("CoroutineTest", "hello jobl child")
}
Log.i("CoroutineTest", "hello jobl")
throw error("throwing IllegalStateException")
}
jobl.1invokeOnCompletion {
Log.i("CoroutineTest", "jobl complete. $it")

Output:

20:09:59.870 I hello jobl

20:09:59.890 I
[com.example.coroutineexceptiontest.MainActivityKt$checkJobCancellations$s$i
nlined$CoroutineExceptionHandler$1@482cc6,
StandaloneCoroutine{Cancelling}@3839487, Dispatchers.IO]
java.lang.IllegalStateException: throwing IllegalStateException
20:09:59.890 I jobl complete. java.lang.IllegalStateException: throwing
IllegalStateException

40

Structured Concurrency

every time our control splits into multiple concurrent paths, we make sure they join up again
child operations are guaranteed to complete before their parents

no child operation is executed outside the scope of a parent operation

1. When a scope cancels, all of its coroutines cancel.
2. When a suspend fun returns, all of its work is done.

3. When a coroutine errors, its caller or scope is notified.”

Example : ViewModelScope

41

Structured Concurrency

val scope = CoroutineScope(Dispatchers.I0)
scope. launch {
delay (100)
Log.i("CoroutineTest", "hello")
}.invokeOnCompletion {
Log.i("CoroutineTest", "job complete. $it")

}
mssssm) Scope.cancel()

Output:

job complete. kotlinx.coroutines.JobCancellationException: Job was
cancelled; job=JobImpl{Cancelling}@482ccé6

42

Structured Concurrency

val

scop

Output:

hell
job

scope = CoroutineScope(Dispatchers.IO0)
scope. launch(Job()) {

delay(100)

Log.i("CoroutineTest", "hello")
}.invokeOnCompletion {

Log.i("CoroutineTest", "job complete. $it")

}

e.cancel()

The structured concurrency is broken

0
complete. null

43

Coroutine Exception Handler

Coroutine Exception Handler

YA

Coroutine Exception Handler

Created by launch We have uncaught exceptions Needs try-catch

Created by async always catches all its exceptions and We don't have uncaught exceptions.

45

Canceling coroutine

Canceling coroutine

46

Canceling coroutine

Coroutines handle cancellation by throwing a special exception: CancellationException

If we just call cancel, it doesn’t mean that the coroutine work will just stop.

job = launch { iIsActive - withContext - delay - ...
(file files) {

readFile(file)

47

Kotlin Coroutines

Flow
SharedFlow
StateFlow

48

Kotlin Coroutines

Hot & Cold

49

Hot & Cold

e observe/subscribe

e collect

{

Observable

/

Single/Flowable...

Flow/stateFlow/SharedFlow

L

Subscriber

50

Hot & Cold

Subscriber 2 Subscriber 1

Cold _
Observable Subscriber 1 \ /

Hot
Observable

Observable Subscriber 2 / \

Cold
Subscriber 3 Subscriber 4

51

Hot & Cold

Flow

52

Flow & Shared-Flow & State-Flow

Flow

A sequence of values that can be asynchronously computed and delivered over time

Shared-Flow

Allows multiple collectors to listen to the same stream of data independently.

State-Flow

stores the last state(most recent value) and emits it to all it's collectors

53

Flow & Shared-Flow & State-Flow

- Broadcast a value to multiple collectors

- Multiple subscribers to the same stream of data.

- Store a certain number of previously emitted values

/ holding a single value at a time

- Represents a state\

the most recent value is retained and immediately
emitted to new collectors.

- Single source of truth for a state

- Automatically update all the collectors with the latest state

54

Flow & Shared-Flow & State-Flow

Live Datas (Stock price) StateFlow

Event bus SharedFlow

Chat Messaging App SharedFlow

55

Feature

[Type

Statefulness

Conflation

Mutable

Initial value

Emitting
values

Cold stream

No state

No
conflation

No Replay

emit(value)

On-demand
sequences

StateFlow

Hot stream

Stateful

Conflates

Always replays
last value

Yes with
MutableStateF|
ow()

Yes

* emit(value)
* value = new
value

Observable
state

SharedFlow

Hot stream

Optional Replay
cache

Configurable

Configurable
Replay cache

Yes with
MutableSharedFlo

w()

No

* emit(value)
s tryEmit(value)

Event
broadcasting

Best Practices In Android

Inject Dispatchers

Suspend functions should be safe to call from the main thread
The ViewModel should create coroutines

Don't expose mutable types

The data and business layer should expose suspend functions and Flows

Creating coroutines in the business and data layer
Avoid GlobalScope

Make your coroutine cancellable

57

Inject Dispatchers

// DO inject Dispatchers
class NewsRepository(

private val defaultDispatcher: CoroutineDispatcher = Dispatchers.Default
) {
suspend fun loadNews() = withContext(defaultDispatcher) { /* ... */ }

testing easier as you can replace those dispatchers in unit and instrumentation tests with a

test dispatcher

58

https://developer.android.com/kotlin/coroutines/coroutines-best-practices#test-coroutine-dispatcher

Suspend functions should be safe to call from the main thread

class NewsRepository(private val ioDispatcher: CoroutineDispatcher) {

// As this operation is manually retrieving the news from the server

// using a blocking HttpURLConnection, it needs to move the execution

// to an IO dispatcher to make it main-safe

suspend fun fetchLatestNews(): List<Article> {
withContext(ioDispatcher) { /* ... implementation ... */ }

}

59

The ViewModel should create coroutines

e Views shouldn't directly trigger any coroutines to perform business logic

e your coroutines will survive configuration changes automatically

e Views should trigger coroutines for Ul-related logic

class LatestNewsViewModel(
private val getLatestNewsWithAuthors: GetLatestNewsWithAuthorsUseCase
) : ViewModel() {

private val _uiState = MutableStateFlow<LatestNewsUiState>(LatestNewsUiState.Loading)
val uiState: StateFlow<LatestNewsUiState> = _uiState

fun loadNews() {
viewModelScope.launch {
val latestNewsWithAuthors = getLatestNewsWithAuthors()
_uiState.value = LatestNewsUiState.Success(latestNewsWithAuthors)

60

Don't expose mutable types

class LatestNewsViewModel : ViewModel() {

private val _uiState = MutableStateFlow(LatestNewsUiState.lLoading)
val uiState: StateFlow<LatestNewsUiState> = _uiState

[E i %)

61

The data and business layer should expose suspend functions and Flows

Classes in these layers should expose suspend functions for one-shot calls and Flow to notify about data changes.

class ExampleRepository {
suspend fun makeNetworkRequest() { /* ... */ }

fun getExamples(): Flow<Example> { /* ... */ }

62

Creating coroutines in the business and data layer

If the work to be done is relevant as long as the app is opened, and the work is not bound to a particular screen, then the work
should outlive the caller's lifecycle.

class ArticlesRepository(
private val articlesDataSource: ArticlesDataSource,
private val externalScope: CoroutineScope,

) |
// As we want to complete bookmarking the article even if the user moves
// away from the screen, the work is done creating a new coroutine
// from an external scope
suspend fun bookmarkArticle(article: Article) {
externalScope.launch { articlesDataSource.bookmarkArticle(article) }
.join() // Wait for the coroutine to complete
}
}

externalScope should be created and managed by a class that lives longer than the current screen, it could be
managed by the Application class or a ViewModel scoped to a navigation graph.

63

Creating coroutines in the business and data layer

Example: Driver Optimistic NPS

V40230 1239PMO© 4 ! | - 7 Sl | G

il Elo < uwksilo, 000 2

< Lao)ls oS eamline LbigeT V. (B)
. . & a ¢l
FauS 0 byl yeb2 |y 365 ke ol

5,5 olase
=

14
Sred E"
L IR 3
¢

%
size
s
Eoed 135/tess LuadgS' o JSobrelss
[e Sred ot ‘
oy s %
VvV dade g i o yids cablue cuulgs > * {) 4"1% =
ES 1 N . ‘
T o Sl TSy
> S,
\f’“"w’b ek olase ¥ ~
oltez =y
92 2ol
olitez et olsSs |
v o \ & possen W\““n
oS
£ u?ﬁ
v 3gon —— LA
93385 4 43 ! o oM, 35
% w c% Lolez
3 ‘% N I e {59 Q A
< 3 & 3o
Losls Slaly

64

Creating coroutines in the business and data layer

Example Of injecting external scope : Driver Optimistic NPS

2 AppScope : CoroutineScope

s IOAppScope(private val coroutineDispatcherProvider: CoroutineDispatcherProvider) : AppScope {
yverrid . coroutineContext: CoroutineContext
() = coroutineDispatcherProvider.ioDispatcher()

single<AppScope> {
I0AppScope(get())

}

65

Avoid GlobalScope

e Makes testing very hard as your code is executed in an uncontrolled scope,

you won't be able to control its execution.

66

Make your coroutine cancellable

someScope.launch {
for(file in files) {
ensureActive() // Check for cancellation
readFile(file)

67

Thanks!

