
Move Fast & Don't Break Things
Ankit Mehta, Google

 Ankit Mehta, Google

Move Fast & Don’t Break Things

GTAC 2014

Why am I talking @ GTAC

● Sharing my experience of a decade @ Google in Test Engineering
● Passionate about balance between velocity and quality
● Taking an opportunity to share Google’s take at balancing velocity and quality

Interesting side projects @ Google:
MAD (Millions of Automated Documents)
Scale Google’s Bug database
Surveytool
Microprocessor controlled pick n place manipulator (school)

Move Fast & Don’t Break Things

Test Engineering
“what is our purpose?”

Move Fast & Don’t Break Things

Build world class infrastructure to
launch high quality innovative products
fast that delight our users

Google from the outside..

Move Fast & Don’t Break Things

Google from the inside…

Move Fast & Don’t Break Things

More code
● 30K check-ins per day
● A check-in every 3s!

Move Fast & Don’t Break Things

Move Fast & Don’t Break Things More releases
● 2x more releases

Move Fast & Don’t Break Things

State of releases

● Releases have long cycles; hence everyone wants in
● Lack of discipline/time pressure leads to regressions and further delays
● No way to isolate issue and hence further delay and work around it

Move Fast & Don’t Break Things

Moving Fast is Good!

● Innovate
● Address flaws quickly
● Better productivity
● Better Code Health

Move Fast & Don’t Break Things

… But Breaking things isn’t

● User trust/satisfaction
● Uphold the brand
● Launch products
● Set a high bar

 My Testing Philosophy
What many teams do How it should be done

Move Fast & Don’t Break Things

Maintenance
Slower tests

Flakiness

Move Fast & Don’t Break Things

Move Fast &
Don’t Break
Things

Push on Amber

Move Fast & Don’t Break Things

Move Fast &
Don’t Break
Things

Move Fast & Don’t Break Things

Push on Green..

“As soon as test suites go green, deployment to production is automatically
started”

This has evolved at Google. We have tens of thousands of tests for some projects,
some of which could be failing and/or flaky

Move Fast & Don’t Break Things

Push on Amber

● Daily pushes to prod
● Stable top of tree
● Smarter regression testing
● Critical tests cannot be bypassed

Prevent Bugs

Push on Amber

Move Fast & Don’t Break Things

Move Fast &
Don’t Break
Things

Move Fast & Don’t Break Things

Prevent Bugs

● Prevent bugs and not catch them
● Deterministic hermetic tests
● Prevent bad code from getting in
● High presubmit coverage and usage

Move Fast & Don’t Break Things

What is a Hermetic Test?

The short definition would be a “test in a box”.
My version: run a test while on a airplane *without network

Non-Hermetic Servers

Before

Move Fast & Don’t Break Things

Hermetic Servers

After

Move Fast & Don’t Break Things

Prevent Bugs

Push on Amber

Push Testing upstream

Move Fast & Don’t Break Things

Move Fast &
Don’t Break
Things

Pushing Testing Upstream

Move Fast & Don’t Break Things

Prevent Bugs

Push on Amber

Push Testing upstream

Delineate product
releases and features

Move Fast & Don’t Break Things

Move Fast &
Don’t Break
Things

Move Fast & Don’t Break Things

Delineate product releases and features

● Releases always keep rolling
● Dark launch features
● Revert features and not revert releases
● Launch releases without leaking features

Prevent Bugs

Push on Amber

Push Testing upstream

Productivity First

Delineate product
releases and features

Move Fast & Don’t Break Things

Move Fast &
Don’t Break
Things

Move Fast & Don’t Break Things

Productivity First..

● Invisible Tests
● Tests an asset and not a liability
● Fast UI Automation
● Zero tolerance on flakiness

Attack Bad Tests

● Slow Tests
● Flaky Tests

Move Fast & Don’t Break Things

Flaky tests are worse than no tests
Move Fast & Don’t Break Things

Robosheriff
Move Fast & Don’t Break Things

Social @ Google 2012 2013 2014 Assessment

Average presubmit time 21 min 28 min 22 min Productivity

Code Coverage ??? 72.80% 75.60% Automation

% Green Cycles 71.40% 82.40% 89.60% Test Hygiene

Avg Submit to Prod Time 17 hrs 11 hrs 13 hrs Velocity

Total presubmit run time 196 d 11392 d 8033 d Better Tests

Total automation time 22697 d 52785 d 114040 d Better Tests

P1 bugs avg resolution time 69 d 28 d 13 d Bug Hygiene

Prevent Bugs

Push on Amber

Push Testing upstream

Productivity FirstFishfood

Delineate product
releases and features

Move Fast & Don’t Break Things

Move Fast &
Don’t Break
Things

Move Fast & Don’t Break Things

Fishfood

● Live on the bleeding edge
● Bugs get found/fixed
● No SLA for fishfood from test
● Rapid iterations. 4 hours from design to bug bash for a feature.

Prevent Bugs

Push on Amber

Push Testing upstream

Productivity FirstFishfood

Prioritize Releases Delineate product
releases and features

Move Fast & Don’t Break Things

Move Fast &
Don’t Break
Things

Prioritize Releases

● Must be an ongoing commitment
● All must want to fix root problems (post-mortem!)
● Have a dedicated release team
● Make sure everyone understands it

Move Fast & Don’t Break Things

Prevent Bugs

Push on Amber

Push Testing upstream

Productivity FirstFishfood

Prioritize Releases

Treat Regressions
as build blockers

Delineate product
releases and features

Move Fast & Don’t Break Things

Move Fast &
Don’t Break
Things

Treat regressions as build breaks

Cultural shift
Rollback == guaranteed fix
Verifications are simpler
Devs not under gun for fix

Move Fast & Don’t Break Things

Prevent Bugs

Push on Amber

Push Testing upstream

Productivity FirstFishfood

Prioritize Releases

Treat Regressions
as build blockers

Remember
Murphy’s Law

Delineate product
releases and features

Move Fast & Don’t Break Things

Move Fast &
Don’t Break
Things

Move Fast & Don’t Break Things

Remember Murphy’s Law

● Kill switches for features
● Big refactorings behind flags
● All user visible changes behind experiments

Prevent Bugs

Push on Amber

Push Testing upstream

Productivity FirstFishfood

Prioritize Releases

Treat Regressions
as build blockers

Remember
Murphy’s Law

Delineate product
releases and features

Balance Velocity
vs Quality

Move Fast & Don’t Break Things

Move Fast &
Don’t Break
Things

Move Fast & Don’t Break Things

Balance Velocity vs Quality

● Gate keepers
● Provide risk assessment
● Trusted Testers
● Things that can’t be risked with: ACLs, data, security, upgrades,

migrations

Prevent Bugs

Push on Amber

Push Testing upstream

Productivity FirstFishfood

Prioritize Releases

Treat Regressions
as build blockers

Remember
Murphy’s Law

Delineate product
releases and features

Balance Velocity
vs Quality

Move Fast & Don’t Break Things

Move Fast &
Don’t Break
Things

It’s no secret mobile is taking over.

PCS

SMARTPHONES
& TABLETS

Move Fast & Don’t Break Things

“Mobile First” Challenges

● Balance release velocity - can’t push daily to users.
● Mobile app updates use battery and cellular data.
● Cannot roll back a bad mobile app easily; higher quality bar needed.

Come join the discussion @ “Move Fast & Don’t Break Things” G+ Community

Move Fast & Don’t Break Things

Prevent Bugs

Push on Amber

Push Testing Upstream

Productivity FirstFishfood

Prioritize Releases

Treat Regressions
as build blockers

Remember
Murphy’s Law

Delineate product
releases and features

Balance Velocity
vs Quality

Move Fast & Don’t Break Things

Move Fast &
Don’t Break
Things

Cultural
Cultural + Tooling
Tooling

