| []] n H EEEEE
KIRKLAND 2014

Move Fast & Don't Break Things
Ankit Mehta, Google

D - Fast
4 B r

3333333

Ankit Mehta, Google GTAC 2014

| /5 Move Fast & Don't Break Things

Why am | talking @ GTAC

e Sharing my experience of a decade @ Google in Test Engineering
e Passionate about balance between velocity and quality
e Taking an opportunity to share Google's take at balancing velocity and quality

Interesting side projects @ Google:
MAD (Millions of Automated Documents)
Scale Google's Bug database
Surveytool
Microprocessor controlled pick n place manipulator (school)

e

Test Engineering

l'l
an>3013

Build world class infrastructure to

launch high quality innovative products
fast that delight our users

Move Fast & Don't Break Things

Submits per day

42,000

34,000

26,000

18,000

10,000

More code

e 30K check-ins per day
e A check-in every 3s!

10/1/2013 1/1/2014

B Submits per day

4/1/2014 71112014

B Linear submits per day

I Engineers

: 1
10/1/2014

42,000

34,000

26,000

18,000

0,000

Engineers

More releases

e 2x more releases

5,000 : - " : e

4,300

3,600

2,900

2,200
10/1/2013 1/1/2014 4/1/2014 7/1/2014 10/1/2014

B Releases B Linsar releases

! ”hm Move Fast & Don't Break Things

State of releases

e Releases have long cycles; hence everyone wants in
e Lack of discipline/time pressure leads to regressions and further delays
e No way to isolate issue and hence further delay and work around it

bl Move Fast & Don't Break Things

Moving Fast is Good!

Innovate

Address flaws quickly
Better productivity
Better Code Health

:\ ,—h 7% Move Fast & Don't Break Things

... But Breaking things isn't

User trust/satisfaction
Uphold the brand
Launch products

Set a high bar

o o
My Testing Philosophy

What many teams do How it should be done

Ideal Software
Testing Pyramid
s

Based
Testing

Automated
GUI Tests
Maintenance Automated API Tests
Slower tests :
: Automated Integration Tests
Flakiness

Automated Component Tests

Integration
Tesls

Automated Unit Tests

Move Fast &

Don't Break
Things

Move Fast &
Don't Break
Things

| /5 Move Fast & Don't Break Things

Push on Green..

“‘As soon as test suites go green, deployment to production is automatically
started”

This has evolved at Google. We have tens of thousands of tests for some projects,
some of which could be failing and/or flaky

Move Fast & Don't Break Things

Push on Amber ‘

Daily pu
top of tree
r regression testing

- Push on Amber

Move Fast &
Don't Break
Things

Move Fast & Don't Break Things

Prevent Bugs

Prevent bugs and not catch them
Deterministic hermetic tests
Prevent bad code from getting in
High presubmit coverage and usage

\

/ Move Fast & Don't Break Things

What is a Hermetic Test?

The short definition would be a “test in a box".
My version: run a test while on a airplane *without network

her-met-ic
/har ' medik/

adjective
adjective: hermetic; adjective: Hermetic

1. (of a seal or closure) complete and airtight.
"a hermetic seal that ensures perfect waterproofing”
synonyms: airtight, tight, sealed, zip-locked, vacuum-packed; More
. insulated or protected from outside influences.
"a hermetic society”

Non-Hermetic Servers

User’s Client

~—p Request from User
+—— Response to User Another Backend

Before

e

Hermetic Servers

In-memory
datastore .

Test Client

In-memory
datastore -

——p Request from Test to SUT
-4—— Response from SUT to Test

—# Mocked server connection

— ™ Local data exchanges
between hermetic servers

After

Move Fast &

Do-n't Break Push Testing upstream
Things

Pushing Testing Upstream

High Priority
Feature

QA won't test this

feature

y

Hold own bug
bash and/or
document test
scenarios

Integration
Test

Prelaunch

,| sanity testing

and bug
bash

Prelaunch
sanity testing
and bug
bash

Daily PO
testing

Prelaunch
sanity, bug
bash, but no
daily PO until
tests in
continuous build

Move Fast &

Don't Break Push Testing upstream
Things

Delineate product

releases and features

m Y
| / Move Fast & Don’t Break Things

S

Delineate product releases and features

Releases always keep rolling

Dark launch features

Revert features and not revert releases
Launch releases without leaking features

Move Fast &

Don't Break Push Testing upstream
Things

Productivity First

Delineate product
releases and features

/// \\\
(.!’/h Move Fast & Don’t Break Things

S

Productivity First..

Invisible Tests

Tests an asset and not a liability
Fast Ul Automation

Zero tolerance on flakiness

Move Fast & Don't Break Things

e

Flaky tests are worse than no tests

120

Flakes
3

Aug 15, 2014 Aug 22,2014 Aug 29,2014 Sep 5, 2014

Robosheriff
L |

Flaky Continuous Build
(<100 targets)

verraytes (] I O W0
newsiatieTest (] () (D I DWW

i i Restore NewStableTest Detect NewStableTest

to People.oz
Detect NewFlakyTest is Nt Fieley
Flaky

Move NewFlakyTest to
smokeplus

< I I RobocopService

Social @ Google 2012 2013 2014
Average presubmit time 91 min 98 min 99 min
Code Coverage 777 72.80% 75.60%
% Green Cycles 71.40% 82.40% 89.60%
Avg Submit to Prod Time 17 hrs 11 hrs 13 hrs
Total presubmit run time 196 d 11392 d 8033 d
Total automation time 22697 d 52785 d 114040 d
P1 bugs avg resolution time 69 d 28 d 13 d

Assessment

- Push on Amber

Move Fast &
Don't Break
Things

- Push Testing upstream
Delineate product
releases and features

Fishfood Productivity First

| Move Fast & Don't Break Things

/
/

Fishfood
e Live on the bleeding edge
e Bugs get found/fixed
e No SLA for fishfood from test
e Rapid iterations. 4 hours from design to bug bash for a feature.

- Push on Amber

Move Fast &
Don't Break
Things

- Push Testing upstream
N Delineate product
PEr e Ll releases and features

Fishfood Productivity First

Move Fast & Don't Break Things

Prioritize Releases

Must be an ongoing commitment

All must want to fix root problems (post-mortem!)
Have a dedicated release team

Make sure everyone understands it

- Push on Amber

Move Fast &
Don't Break
Things

Treat Regressions
as build blockers

- Push Testing upstream
N Delineate product
PEr e Ll releases and features

Fishfood Productivity First

Treat regressions as build breaks

Cultural shift

Rollback == guaranteed fix
Verifications are simpler
Devs not under gun for fix

- Push on Amber
Remember
Murphy’s Law

Move Fast &

Do-n't Break Push Testing upstream
Things

Treat Regressions
as build blockers

Fishfood Productivity First

Prioritize Releases Dl P TE:
releases and features

m Y
| / Move Fast & Don’t Break Things

S

Remember Murphy's Law

e Kill switches for features
e Big refactorings behind flags
e All user visible changes behind experiments

Balance Velocity Push on Amber
vs Quality
Remember
Murphy’s Law

Move Fast &

Do-n't Break Push Testing upstream
Things

Treat Regressions
as build blockers

Fishfood Productivity First

Prioritize Releases Dl P TE:
releases and features

A
Move Fast & Don't Break Things

Balance Velocity vs Quality

o—Gatekeepers

e Provide risk assessment

e Trusted Testers

e Things that can't be risked with: ACLs, data, security, upgrades,
migrations

Balance Velocity Push on Amber
vs Quality
Remember
Murphy’s Law

Move Fast &

Do-n't Break Push Testing upstream
Things

Treat Regressions
as build blockers

Fishfood Productivity First

Prioritize Releases Dl P TE:
releases and features

1,250M

1,000M

750M

500M

250M

o

It's no secret mobile is taking over.

1983

1985

PCS

1987

1989

1991

1993

1995

1997

1999

2001

2003

2005

2007

2009

2011

2013

e

“Mobile First” Challenges

e Balance release velocity - can't push daily to users.
e Mobile app updates use battery and cellular data.
e Cannot roll back a bad mobile app easily; higher quality bar needed.

Come join the discussion @ “Move Fast & Don't Break Things” G+ Community

Cultural

Balance Velocity Push on Amber Cultural + Tooling
vs Quality Tooling
Remember

Move Fast &
Don't Break

Treat .Regressions Push Testing Upstream
as build blockers

Things

Fishfood Productivity First

. Delineate product
Prioritize Releases
releases and features

