Single Cell Multiomics Data Integration and Visualisation
Dr Shila Ghazanfar�Royal Society- Newton International Fellow�John Marioni Lab�Cancer Research UK Cambridge Institute�University of Cambridge�@shazanfar�
Introduction to multiomics data integration and visualisation�EMBL-EBI Training�21-25 March 2022
Single Cell Multiomics Data Integration and Visualisation
Single Cell Multiomics Data Integration and Visualisation
Why single cell genomics?
Single cell transcriptomics
A typical single cell experiment
Throughput of scRNA-seq technologies
Single cell capture protocols
10.1038/s41576-019-0150-2
scRNA-seq data
scRNA-seq data analysis
Quality control
Normalisation by sharing information across cells
Batch correction
Data from Nestorawa et al., Blood (2016); Paul et al., Cell (2015).
Batch correction – Mutual nearest neighbours
Data from Nestorawa et al., Blood (2016); Paul et al., Cell (2015).
Batch correction - scMerge
Lin et al (2019) 10.1073/pnas.1820006116
Dimensionality reduction with Principal Component Analysis
Visualisation in low dimensional space - PCA
Visualisation in low dimensional space - t-SNE & UMAP
Single Cell Multiomics Data Integration and Visualisation
Single cell multiomics data
Stuart & Satija (2019)
Types of single cell multiomics
CITE-seq
10X Multiome
SeqFISH
Challenges in analysing single cell multiomics data
Analysing single cell multiomics data
Clark et al (2018) 10.1038/s41467-018-03149-4
scNMT-seq
Analysing single cell multiomics data - MOFA
Argelaguet et al (2018) 10.1186/s13059-020-02015-1
Analysing single cell multiomics data - WNN
Hao et al (2021) 10.1016/j.cell.2021.04.048
Single Cell Multiomics Data Integration and Visualisation
Horizontal and vertical single cell data integration
Argelaguet, Cuomo et al (2021)
e.g. batch effects
e.g. single cell multiomics
Mosaic single cell data integration
seqFISH & scRNA-seq as Mosaic integration
Lohoff*, Ghazanfar* et al (2021) 10.1038/s41587-021-01006-2
naive approach: restrict to just intersecting features*
seqFISH & scRNA-seq as Mosaic integration
naive approach: restrict to just intersecting features*
Lohoff*, Ghazanfar* et al (2021) 10.1038/s41587-021-01006-2
Single cell mosaic data integration - StabMap
features
cells
Observed data matrices
StabMap embedding
dimensions
cells
Ghazanfar et al (2022) bioRxiv 10.1101/2022.02.24.481823
features
cells
No shared
features
Mosaic Data Topology
Observed data matrices
StabMap embedding
dimensions
cells
Single cell mosaic data integration - StabMap
Ghazanfar et al (2022) bioRxiv 10.1101/2022.02.24.481823
features
cells
No shared
features
Mosaic Data Topology
Observed data matrices
StabMap embedding
dimensions
cells
Single cell mosaic data integration - StabMap
Ghazanfar et al (2022) bioRxiv 10.1101/2022.02.24.481823
features
cells
No shared
features
Mosaic Data Topology
Observed data matrices
StabMap embedding
dimensions
cells
Single cell mosaic data integration - StabMap
Ghazanfar et al (2022) bioRxiv 10.1101/2022.02.24.481823
features
cells
No shared
features
Mosaic Data Topology
Observed data matrices
StabMap embedding
dimensions
cells
Single cell mosaic data integration - StabMap
Ghazanfar et al (2022) bioRxiv 10.1101/2022.02.24.481823
features
cells
No shared
features
Mosaic Data Topology
Observed data matrices
StabMap embedding
dimensions
cells
StabMap embedding
Single cell mosaic data integration - StabMap
Ghazanfar et al (2022) bioRxiv 10.1101/2022.02.24.481823
Single cell mosaic data integration – Bridge integration using dictionary learning
Hao et al (2022) bioRxiv 10.1101/2022.02.24.481684
Single cell mosaic data integration – UINMF
Kriebel et al (2022) 10.1038/s41467-022-28431-4
Single cell mosaic data integration – MultiMAP
Jain et al (2021) 10.1186/s13059-021-02565-y
Output:
Single Cell Multiomics Data Integration and Visualisation
Working with integrated single cell data
http://bioconductor.org/books/3.14/OSCA
Working with integrated single cell data
Dann et al (2021) 10.1038/s41587-021-01033-z
Working with integrated single cell data
Lohoff*, Ghazanfar* et al (2021) 10.1038/s41587-021-01006-2
Single cell and multiomics data containers
muon
Bredikhin et al (2022) 10.1186/s13059-021-02577-8
Single Cell Multiomics Data Integration and Visualisation
Common issues visualising single cell multiomics data
Freytag et al (2020) 10.1093/bioinformatics/btz907
https://marionilab.cruk.cam.ac.uk/MouseGastrulation2018/
scRNA-seq
seqFISH
Visualising single cell multiomics data jointly
Interactive single cell visualisation platforms
Interactive single cell visualisation platforms - Vitessce
Interactive single cell visualisation platforms - Shiny
https://crukci.shinyapps.io/SpatialMouseAtlas/
Single Cell Multiomics Data Integration and Visualisation
Additional resources
Thank you! Questions welcome
@shazanfar�Shila.Ghazanfar@cruk.cam.ac.uk Shila.Ghazanfar@sydney.edu.au
From May 2022: please get in touch!�- PhD Student�- Collaborations
The Ghazanfar lab will focus on developing statistical approaches for spatial genomics at single cell resolution.