Structural Brain MRI Segmentation Beyond FreeSurfer
Ashkan Nejad
Early-Stage Researcher at Royal Dutch Visio and UMCG
welcome, welkom, tere tulemast, tervetuloa, bienvenue, benvenuta, velkommen, добро пожаловать, bienvenidas, 欢迎 , स्वागत हे, 환영, ברוך הבא, hosgeldiniz, أهلا بك, خوش آمدید
Brain MRI Segmentation
2
2/16/2022
Figure extracted from [2]
Advantages:
Disadvantages:
3
2/16/2022
[3]
Alternatives
FreeSurfer is not be the only available solution.
Limitation of alternatives: High GPU requirement and difficulty in target set customization
Introducing FLBS framework
4
2/16/2022
SLANT
Advantages:
Shortcomings:
5
2/16/2022
[2]
SLANT
6
2/16/2022
SAU-Net
7
2/16/2022
[5]
FastSurfer
8
2/16/2022
[6]
Limitations
9
2/16/2022
FLBS (Fast & Light Brain MRI Segmentation)
10
2/16/2022
In collaboration with Tehran University of Medical Sciences and Iran’s National Elites Foundation
Evaluation
OASIS-3 [8] dataset for both (100 samples for train, 40 for test)
OASIS-3 dataset for train and CoRR-BNU1 [9] dataset for test (700 samples train, 50 for test)
11
2/16/2022
Figure extracted from [7]
Comparison – No Transfer Learning
12
2/16/2022
Comparison – Transfer Learning
13
2/16/2022
Comparison – Memory and Time Balance
14
2/16/2022
FLBS
Executed on GPU: Geforce GTX 1080 Ti
CPU: Core-i7 6560U
Discussion
15
2/16/2022
16
2/16/2022
?
The presentation content will be available on nejad.info
References
[1] Despotović, Ivana, Bart Goossens, and Wilfried Philips. "MRI segmentation of the human brain: challenges, methods, and applications." Computational and mathematical methods in medicine 2015 (2015).
[2] Huo, Yuankai, Zhoubing Xu, Yunxi Xiong, Katherine Aboud, Prasanna Parvathaneni, Shunxing Bao, Camilo Bermudez, Susan M. Resnick, Laurie E. Cutting, and Bennett A. Landman. "3D whole brain segmentation using spatially localized atlas network tiles." NeuroImage 194 (2019): 105-119.
[3] Dale, A.M., Fischl, B., Sereno, M.I., 1999. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179-194.
[4] https://surfer.nmr.mgh.harvard.edu/fswiki/
[5] Minho Lee et al., “Split-attention u-net: A fully convolutional network for robust multi-label segmentation from brain mri,” Brain Sciences, vol. 10, no. 12, pp. 974, 2020
[6] Leonie Henschel et al., “Fastsurfer-a fast and accurate deep learning-based neuroimaging pipeline,” NeuroImage, vol. 219, 2020.
[7] https://towardsdatascience.com/metrics-to-evaluate-your-semantic-segmentation-model-6bcb99639aa2
[8] LaMontagne, Pamela J., et al. "OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease." MedRxiv (2019).
[9] Zuo, Xi-Nian, et al. "An open science resource for establishing reliability and reproducibility in functional connectomics." Scientific data 1.1 (2014): 1-13.
17
2/16/2022
ML/DL Basic Definitions
Training: Optimizing the ML/DL method based on a part of the data.
Inference: Labeling rest of the data using the optimized ML/DL core.
Loss function: The main formulated evaluation of the performance to optimize.
Dice coefficient: A well-known loss function for segmentation problems.
18
2/16/2022
19
2/16/2022
Courtesy of Devani Cordero, Stanford University
Executing SLANT
20
2/16/2022
# you need to specify the input directory export input_dir=/home/input_dir # make that directory sudo mkdir $input_dir # set output directory export output_dir=$input_dir/output #run the docker sudo nvidia-docker run -it --rm -v $input_dir:/INPUTS/ -v $output_dir:/OUTPUTS … masidocker/public:deep_brain_seg_v1_1_0 /extra/run_deep_brain_seg.sh |
Comparison – Accuracy (Dice Coefficient)
21
2/16/2022
Train and inference on OASIS-3 dataset
Train on OASIS-3 dataset and inference on CoRR-BNU1
Content
22
2/16/2022
SAU-Net
23
2/16/2022
[5]