Matteo Richiardi
Complexity Economics
University of Turin
February-April 2024
Lecture 8:�Networks
Matteo Richiardi
Complexity Economics
University of Turin
February-April 2024
Sources:
In Ersilia, to establish the relationships that sustain the city’s life, the inhabitants stretch strings from the corners of the houses, white or black or gray or black-and-white according to whether they mark a relationship of blood, of trade, authority, agency. When the strings become so numerous that you can no longer pass among them, the inhabitants leave: the houses are dismantled; only the strings and their supports remain.
From a mountainside, camping with their household goods, Ersilia’s refugees look at the labyrinth of taut strings and poles that rise in the plain. That is the city of Ersilia still, and they are nothing.
They rebuild Ersilia elsewhere. They weave a similar pattern of strings which they would like to be more complex and at the same time more regular than the other. Then they abandon it and take themselves and their houses still farther away.
Thus, when traveling in the territory of Ersilia, you come upon the ruins of abandoned cities, without the walls which do not last, without the bones of the dead which the wind rolls away: spiderwebs of intricate relationships seeking a form.
—Italo Calvino, Invisible Cities (1972)
A Ersilia, per stabilire i rapporti che reggono la vita della città, gli abitanti tendono dei fili tra gli spigoli delle case, bianchi o neri o grigi o bianco-e-neri a seconda se segnano relazioni di parentela, scambio, autorità, rappresentanza. Quando i fili sono tanti che non si può più passare in mezzo, gli abitanti vanno via: le case vengono smontate; restano solo i fili e i sostegni dei fili.
Dalla costa d’un monte, accampati con le masserizie, i profughi di Ersilia guardano l’intrico di fili tesi e pali che s’innalza nella pianura. E’ quello ancora la città di Ersilia, e loro sono niente.
Riedificano Ersilia altrove. Tessono con i fili una figura simile che vorrebbero più complicata e insieme più regolare dell’altra. Poi l’abbandonano e trasportano ancora più lontano sé e le case.
Così viaggiando nel territorio di Ersilia incontri le rovine delle città abbandonate, senza le mura che non durano, senza le ossa dei morti che il vento fa rotolare: ragnatele di rapporti intricati che cercano una forma. �
Small worlds
Networks: Basic concepts
Networks as matrixes
Average path length and diameter
Degree Centrality
Eigenvector Centrality
Closeness centrality
🡪 If a node is on average closer to other nodes, it’s more important.
Betweenness Centrality
Node 22 doesn’t have a high degree but it’s playing a key role in connecting two clusters
Clustering Coefficient
🡪 The clustering coefficient for C is 1/6
Regular networks
Random networks
Star networks
Complete networks
Small-world network
Example: Kevin Bacon game
Why small-world?
It has been hypothesized that at least two conflicting evolutionary selective pressures are responsible for the ubiquity of small-world properties:�
Scale-free networks
Scale-free networks
Pareto and Zipf
Pareto and Zipf
George Kingsley Zipf (1902-1950)
�Vilfredo Pareto�(1848-1923)
Network resilience
Resilience in small-world networks
Resilience in scale-free networks