GNN-Surrogate: A Hierarchical and Adaptive Graph Neural Network for Parameter Space Exploration of Unstructured-Mesh Ocean Simulations
1
Scientific Achievement
Enable scientists to rapidly explore the parameter space of ocean ensemble simulations on unstructured grids
Significance and Impact
We show that a graph network based neural network can learn the mapping from simulation parameters to output fields defined on unstructured grids.
(a) Comparison of the sea level temperature maps generated using GNN-Surrogate, IDW interpolation, and InSituNet with the ground truth maps. Comparison of the vertical cross-sections at (b) the equator (c) 75°E generated using GNN-Surrogate and IDW interpolation with the ground truth cross-sections. (d) Comparison of the isothermal layer (ITL) depth maps with temperature isovalue 25℃ generated using GNN-Surrogate and IDW interpolation with the ground truth maps.
Technical Approach
Neng Shi, Jiayi Xu, Skylar W. Wurster, Hanqi Guo, Jonathan Woodring, Luke Van Roekel, and Han-Wei Shen: GNN-Surrogate: A Hierarchical and Adaptive Graph Neural Network for Parameter Space Exploration of Unstructured-Mesh Ocean Simulations, IEEE Transactions on Visualization and Computer Graphics (Proc. IEEE PacificVis 2022), 28(6):2301-2313, 2022.