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Meta Comment

• The Storage Group forward look factorises "Data" into 
three components:

• Data Storage

• Data Movement / Access

• Data Management / Cataloging

• These components are not orthogonal, and hence there 
are cross-terms.



Data Storage
• "Where you put your data"

• Technologies for:

• site-level storage of data

• coordinating/merging servers into storage system

• site-level metadata

• local access

• [interaction with CEs / workflow]



Storage Classes

• Volatile 

• Short-term resilient

• Long-term resilient

• Archival

Caches

Tier-1s 
(Disk + Tape)

Tier-2s

Tier-2Cs (future)?

Tier-2s (output)

Tier-2s (local nonWLCG VOs?)

Tier-2Ds (future)?

Now Future



"Grid SEs"
• DPM

• dCache

• StoRM

• EOS

• "plain" XrootD

• Castor/ECHO



Distributed filesystems

• Early grid SEs (DPM and CASTOR, early dCache) 
managed storage nodes like separate "silos", combining 
them into a virtual namespace.

• This is done better now by a large number of modern 
standards - Lustre, CEPH(fs), HDFS, GlusterFS, GPFS etc.

• These are also more sophisticated than most GridSEs (can 
stripe files, erasure code/replicate blocks, provide POSIX 
interfaces).

• StoRM was/is the "cutdown" grid "shim" solution to this.



Data Lakes
“If you think of a datamart as a store of bottled 
water – cleansed and packaged and structured 
for easy consumption – the data lake is a large 
body of water in a more natural state. The 
contents of the data lake stream in from a 
source to fill the lake, and various users of the 
lake can come to examine, dive in, or take 
samples.”

James Dixon, 2010
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/



Data Lakes

So… it’s a distributed tape farm?



Data Lakes
• "Data Lake" now is an almost pure marketing term.

• In WLCG contexts:

• a consolidated storage system spanning multiple 
geographical locations [and presenting one endpoint]

• probably geographically aware, probably needs to 
reconstruct objects on request, probably provides 
different “QoS” levels.

• eg: distributed EOS; distributed dCache [ ], distributed 
DPM [Italy, GRIF], Dynafed [UK, Italy], NorduGrid T1…



Data Lakes
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(Yes, you could mostly replace “Data Lake” with “Federated Storage” here and it would look 
the same.)



eg: Architecture and prototype of a WLCG data lake for HL-LHC, CHEP 2018 
https://indico.cern.ch/event/587955/contributions/2936867/attachments/1680424/2699527/CHEP2018-DataLake.pdf



Tinkering with resilience

(local) Filesystem

Controller

Servers

Sites/SEs

DPM w/ RAID DPM w/ ZFS CEPH(say) (Data Lake)

SE

Striping+EC/Replication Whole file replication only



Caches
• "Caches" are any form of volatile storage layer inserted into a 

path to improve performance.

• Caches are useful only if data locality is important for your 
workflow:

• imply a strong coupling between storage/data and work/jobs

• Broad enough to cover many types, with very different designs 
and applicability. 

• No list will be exhaustive, as a cache simply needs to improve on 
at least one performance metric, relative to the layer it interposes.
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• "Site local" cache:
• useful when:

• data is read more than once [cache opportunistic]
• data is read once but cache "pre-warmed" with expected data

• not useful when:
• data is read only once [cache opportunistic]

• extra cost incurred from caching + extra network hop
• jobs are not I/O latency limited at all, network optimised

• Cache performance area:
• improved locality / latency
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• IO Performance cache:
• useful when:

• job is I/O bound w/ random I/O heavy workflow
• temp edits needed to local copy

• not useful when:
• job is not I/O bound [esp if job is streaming I/O, reads data once]

• Cache performance area:
• improved performance [expensive SSD/NVMe etc hardware]
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• "Scratch copy" cache
• useful when:

• data is stored in slow to retrieve format [tape, EC stripes]
• data needs to be read repeatedly / 

access model needs reconstruction on each hit
• not useful when:

• data is as easy to retrieve as from local disks
• Cache performance area:

• improved latency / locality
• reduced archive CPU/IO load/tape farm robot activity



Object Stores [and Cloud]

• "Cloud" storage solutions cut out POSIX guarantees for 
efficiencies.

• Object Stores recapitulate many of the choices made 
for Grid storage, for similar reasons (immutability of files 
makes state consistency etc easy)

• Efficient use of Object storage for naïve grid workflows 
needs a caching layer [as Objects do not maintain file 
pointers], or changes to experiment code [less likely].

• Using "Cloud Storage"



Cloud Storage
• Support Cloud APIs, mostly Object Storage [S3, Swift?, 

CDMI?]

• Two use cases:

• "decoupled Storage" == "archival/resilient copies"

• economic argument? TCO , flavour of money

• "coupled Storage" == "making data available to jobs in 
same Cloud"

• requires work on job management / knowledge of 
data requirements.



Cloud / Grid 
Interoperability

• This is mainly a workload management problem!

• for Storage, we need a translation layer for:

• protocol [“grid” -> S3] if we don’t natively S3

• authorisation [X509 -> appropriate capability token]

• Dynafed can do this now

• WLCG “Tokens” will be easier to convert, see 
Security talks.



DOMA
• DOMA are the WLCG project working on Data 

Organisation/Management/Access.

• DOMA priorities directly contextualise and direct our own policies, via 
WLCG.

• Most relevant to Brian's talk, but…

• DOMA directions imply:

• simpler storage [WebDAV might be sufficient?]

• "Data Lakes"/"geographically distributed storage systems"/ moving 
resilience/QoS "upstream" from T2s.

• Token/Capability based authorisation



The Future?



"small" Tier-2s
• "Light" storage: does not need direct access protocols (from 

outside).

• Can Should be POSIX (or Object Stores).

• Needs to be useful for local users / shared on existing local 
resource.

• "Grid" access by:

• "Caching" [volatile, ideally prewarmed - implies workflow 
management choices]

• Explicit local user data placement.



"large" Tier-2s
• "Heavy" storage: needs (Grid specific) access protocols for 

managed data.

• Also must support our non-WLCG users: different protocols 
used outside HEP [mostly S3, http(s)].

• At present, majority of UK "large" Tier-2s are:

• DPM [non-DOME], many large disk servers (of various ages).

• resilience by multiple copies / server level EC ("RAID")

• dCache (majority of CMS storage)



"large" Tier-2s
• Can we simplify / improve large Tier-2s?

• Storage costs: 

• Resilience at Server, not Disk level [improves per file 
performance via striping, improves resilience]

• Grid Layer complexity:

• No SRM, unified filesystem, so… no need for an extra 
namespace layer?

• "Sunk Cost" / "Cost of transition"



"large" Tier-2s

• Doesn’t this look like:

• EOS [with all the distributed storage options turned on]

• Ceph [with RAL ECHO Xrootd shim on top]

• As an aside, an obvious name for a RAL Tape system 
would be NARCISSUS

• dCache [might not be “simpler” than what we have 
now…]



Tier-1

• [See Alastair's, Rob’s Tier-1 talks]



Wider scaling / consolidation

• Storage classes of Tier-2 data are (and will continue) evolving.

• Pressure on Experiment capacity requirements, worldwide, 
due to cost/scaling issues.

• Now (ATLAS+CMS):

• (mostly) non-resilient replicas [of central data]

• temporary copies of local job outputs

• Future?:

• resilient copies of central data [extending from T1s]



Wider scaling / consolidation

• Future:

• resilient copies of central data [extending from T1s]

• DOMA: manage this w/ one endpoint ?EOS?Dynafed? 
"Data Lake"

• potentially stripe / erasure code copies across 
Tier-2/Tier-1 "lake" for online storage. [RAISites]

• [or replicate across "lake"]



Wider scaling / consolidation

• Future:

• resilient copies of central data [extending from T1s]

• DOMA: manage this w/ one endpoint ?EOS? "Data 
Lake"

• potentially stripe / erasure code copies across 
Tier-2/Tier-1 "lake" for online storage. [RAISites]

• [or replicate across "lake"]

Reduces resilience needed at sites; but 
also requires smarter placement.

Decouples [large] Tier-2 sites from storage 
requirements (as reconstruction done at 

client)

All sites, ideally, need (volatile) storage for 
reconstructed copies.

OPAQUE DATA LAKE 
CONTRIBUTION

"INBOX 
Cache"

"OUTBOX 
Cache"



Wider scaling / consolidation

• Non-WLCG VOs

• with UK-controlled Data Lake, offer them same 
access [needs work from GridPP/VOs for data flows 
to sites]

• with WLCG-controlled Data Lake…?

• Tier-2s will still need (heavy?) storage at sites to 
serve these data requirements.



Wider scaling / consolidation

• Tier-2 "heavy" requirements in this context:

• at least one of WebDav, Xrootd interface to uniform 
storage.

• S3 interface?

• Tier-2s look more like object stores / byte store here 
[something already true for, for example, Tier-2s SEs 
accessed via Rucio]



Storage Group's Roles
• Tier-1 technology / FTS / Rucio (multiVO or otherwise)

• "non-WLCG" + IRIS support

• DIRAC? [DFC catalog / access]

• DOMA/VO liaisons

• Tier-2 technology migrations

• "non-WLCG" + IRIS support

• “Data Lake” work + management



Conclusions
• small Tier2s -> no grid storage / intelligent pre-filled caches 

using locally useful POSIX filesystems.

• big Tier2s -> Grid Storage / simplify provision [shims on 
distributed filesystems]. Object Store interfaces for storage 
increasingly important.

• wider scale -> work needed, with DOMA, on Data Lake 
single-endpoint UK-wide solution.

• also our interface to "Cloud storage"

• Moving away from "Grid-parochial" solutions is always best.


