Storage Group Fwd

| 00K
STORAGE

(And Controversy?)

Meta Comment

® The Storage Group forward look factorises "Data" into
three components:

® Data Storage
® Data Movement / Access
® Data Management / Cataloging

® These components are not orthogonal, and hence there
are cross-terms.

Data Storage

® "Where you put your data"
® Technologies for:
® site-level storage of data
® coordinating/merging servers into storage system
® site-level metadata
® |ocal access

® [interaction with CEs / workflow]

Storage Classes

® \/olatile

® Short-term resilient

® | ong-term resilient

® Archival

Now

Future

Caches

Tier-2s (output)

Tier-2s

Tier-2Cs (future)?

Tier-1s
(Disk + Tape)

Tier-2Ds (future)?

Tier-2s (local nonWLCG VOs?)

® DPM

® dCache

® StoRM

® EOS

® "plain" XrootD

® Castor/ECHO

'Grid SEs”

Distributed filesystems

® Farly grid SEs (DPM and CASTOR, early dCache)

managed storage nodes like separate "silos", combining
them into a virtual namespace.

® This is done better now by a large number of modern
standards - Lustre, CEPH(fs), HDFS, GlusterFS, GPFS etc.

® These are also more sophisticated than most GridSEs (can

stripe files, erasure code/replicate blocks, provide POSIX
interfaces).

® StoRM was/is the "cutdown" grid "shim" solution to this.

Data Lakes

“If you think of a datamart as a store of bottled
water — cleansed and packaged and structured
for easy consumption — the data lake is a large
body of water in a more natural state. The
contents of the data lake stream in from a
source to fill the lake, and various users of the
lake can come to examine, dive In, or take

samples.”

James Dixon, 2010
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/

Data Lakes

So... it’s a distributed tape farm?

Data Lakes

® "Data Lake" now is an almost pure marketing term.
® |n WLCG contexts:

® a consolidated storage system spanning multiple
geographical locations [and presenting one endpoint]

® probably geographically aware, probably needs to

reconstruct objects on request, probably provides
different “QoS” levels.

® eq: distributed EOS; distributed dCache [], distributed
DPM [ltaly, GRIF], Dynafed [UK, Italy], NorduGrid T1...

Data Lakes

"Data Lake"

Server Server Server Server

Disks | Disks Disks | Disks Disks | Disks Disks | Disks

Disks | Disks Disks | Disks Disks | Disks Disks | Disks

(Yes, you could mostly replace “Data Lake” with “Federated Storage” here and it would look
the same.)

eg: Architecture and prototype of a WLCG data lake for HL-LHC, CHEP 2018
https://indico.cern.ch/event/587955/contributions/2936867/attachments/1680424/2699527/CHEP2018-DatalLake.pdf

The eulake prototype

Goal: test and
demonstrate some
of those ideas

We deployed a
Distributed Storage
prototype

Based on the EOS
technology

Simone.Campana@cern.ch - CHEP2018 12/07/2018

Tinkering with resilience
Striping+EC/Replication Whole file replication only

DPM w/ RAID DPM w/ ZFS CEPH(say) (Data Lake)

- Sites/SEs

Servers

(local) Filesystem

Controller

SE

Caches

® "Caches" are any form of volatile storage layer inserted into a
path to improve performance.

® Caches are useful only if data locality is important for your
workflow:

® imply a strong coupling between storage/data and work/jobs

® Broad enough to cover many types, with very different designs
and applicability.

® No list will be exhaustive, as a cache simply needs to improve on
at least one performance metric, relative to the layer it interposes.

Some Caches

*

Fast local network

{ *

Slow network

Fast I/O Contended
storage?
Direct Slow

Reconstruction
access

Some Caches

* *

Slow network

Fast local network

¢ "Sjte local" cache:
e useful when:
¢ data is read more than once [cache opportunistic]
¢ data is read once but cache "pre-warmed" with expected data
e not useful when:
¢ data is read only once [cache opportunistic]
¢ extra cost incurred from caching + extra network hop
¢ jobs are not 1/0 latency limited at all, network optimised
e Cache performance area:
e improved locality / latency

Some Caches

¢ |O Performance cache:
e useful when:
¢job is I/0 bound w/ random 1/0 heavy workflow
e temp edits needed to local copy

‘IIHHHIV"lIHHHHI 4"llll

Fast I/O Contended
storage?

LOCAL
DATA

e not useful when:
e job is not I/0 bound [esp if job is streaming I/0, reads data once]
e Cache performance area:
e improved performance [expensive SSD/NVMe etc hardware]

Some Caches

¢ "Scratch copy" cache
e useful when:
e data is stored in slow to retrieve format [tape, EC stripes]
e data needs to be read repeatedly /
access model needs reconstruction on each hit
e not useful when:
e data is as easy to retrieve as from local disks
e Cache performance area:
e improved latency / locality
e reduced archive CPU/IO load/tape farm robot activity

Slow

Direct
access

Reconstruction

Object Stores [and Cloud]

® "Cloud" storage solutions cut out POSIX guarantees for
efficiencies.

® Object Stores recapitulate many of the choices made

for Grid storage, for similar reasons (immutability of files
makes state consistency etc easy)

® Efficient use of Object storage for naive grid workflows

needs a caching layer [as Objects do not maintain file
pointers], or changes to experiment code [less likely].

® Using "Cloud Storage"

Cloud Storage

® Support Cloud APIs, mostly Object Storage [S3, Swift?,
CDMI?]

® Two use cases:
® "decoupled Storage" == "archival/resilient copies"
® economic argument? TCO , flavour of money

® "coupled Storage" == "making data available to jobs in
same Cloud"

® requires work on job management / knowledge of
data requirements.

Cloud / Grid
Interoperability

® This is mainly a workload management problem!
® for Storage, we need a translation layer for:
® protocol [“grid” -> S3] if we don’t natively S3
® authorisation [X509 -> appropriate capability token]
® Dynafed can do this now

® WLCG “Tokens” will be easier to convert, see
Security talks.

DOMA

® DOMA are the WLCG project working on Data
Organisation/Management/Access.

® DOMA priorities directly contextualise and direct our own policies, via
WLCG.

® Most relevant to Brian's talk, but...

® DOMA directions imply:
® simpler storage [WebDAV might be sufficient?]

® "Data Lakes"/"geographically distributed storage systems"/ moving
resilience/QoS "upstream" from T2s.

® Token/Capability based authorisation

The Future?

‘'small” Tier-2s

® "l ight" storage: does not need direct access protocols (from
outside).

® Gan Should be POSIX (or Object Stores).

® Needs to be useful for local users / shared on existing local
resource.

® "Grid" access by:

® "Caching" [volatile, ideally prewarmed - implies workflow
management choices]

® Explicit local user data placement.

‘large” Tier-2s

® "Heavy" storage: needs (Grid specific) access protocols for
managed data.

® Also must support our non-WLCG users: different protocols
used outside HEP [mostly S3, http(s)].

® At present, majority of UK "large" Tier-2s are:
® DPM [non-DOME], many large disk servers (of various ages).
® resilience by multiple copies / server level EC ("RAID")

® dCache (majority of CMS storage)

‘large” Tier-2s

® Can we simplify / improve large Tier-2s?
® Storage costs:

® Resilience at Server, not Disk level [improves per file
performance via striping, improves resilience]

® Grid Layer complexity:

® No SRM, unified filesystem, so... no need for an extra
namespace layer?

® "Sunk Cost" / "Cost of transition"

‘large” Tier-2s

® Doesn’t this look like:

® EOS [with all the distributed storage options turned on]

® Ceph [with RAL ECHO Xrootd shim on top]

e As an aside, an obvious name for a RAL Tape system
would be NARCISSUS

® dCache [might not be “simpler” than what we have
now...]

Tier-1

® [See Alastair's, Rob’s Tier-1 talks]

Wider scaling / consolidation

® Storage classes of Tier-2 data are (and will continue) evolving.

® Pressure on Experiment capacity requirements, worldwide,
due to cost/scaling issues.

® Now (ATLAS+CMS):
® (mostly) non-resilient replicas [of central data]
® temporary copies of local job outputs

® Future?:

® resilient copies of central data [extending from T1s]

Wider scaling / consolidation

® Future:
® resilient copies of central data [extending from T1s]

® DOMA: manage this w/ one endpoint ?EOS?Dynafed?
"Data Lake"

® potentially stripe / erasure code copies across
Tier-2/Tier-1 "lake" for online storage. [RAIS/tes]

® [or replicate across "lake"]

Wider scaling / consolidation

Reduces resilience needed at sites; but

OPAQUE DATA LAKE also requires smarter placemeni.
CONTRIBUTION Decouples [large] Tier-2 sites from storage
requirements (as reconstruction done a
client)
"INBOX "OUTBOX _ _ _
Cache" Cache" All sites, ideally, need (volatile) storage for

reconstructed copies.

® potentially stripe / erasure code copies across
Tier-2/Tier-1 "lake" for online storage. [RAIS/tes]

Wider scaling / consolidation

® Non-WLCG VOs

® with UK-controlled Data Lake, offer them same

access [needs work from GridPP/VOs for data flows
to sites]

® with WLCG-controlled Data Lake...?

® Tier-2s will still need (heavy?) storage at sites to
serve these data requirements.

Wider scaling / consolidation

® Tier-2 "heavy" requirements in this context:

® at least one of WebDav, Xrootd interface to uniform
storage.

® S3 interface?

® Tier-2s look more like object stores / byte store here

[something already true for, for example, Tier-2s SEs
accessed via Rucio]

Storage Group's Roles

® Tier-1 technology / FTS / Rucio (multiVO or otherwise)
® "non-WLCG" + IRIS support
® DIRAC? [DFC catalog / access]

® DOMA/VO liaisons

® Tier-2 technology migrations
® "non-WLCG" + IRIS support

® “Data Lake” work + management

Conclusions

® small Tier2s -> no grid storage / intelligent pre-filled caches
using locally useful POSIX filesystems.

® big Tier2s -> Grid Storage / simplify provision [shims on
distributed filesystems]. Object Store interfaces for storage
iIncreasingly important.

® wider scale -> work needed, with DOMA, on Data Lake
single-endpoint UK-wide solution.

® also our interface to "Cloud storage"

® Moving away from "Grid-parochial” solutions is always best.

