
Storage Group Fwd
Look

STORAGE
(And Controversy?)

Meta Comment

• The Storage Group forward look factorises "Data" into
three components:

• Data Storage

• Data Movement / Access

• Data Management / Cataloging

• These components are not orthogonal, and hence there
are cross-terms.

Data Storage
• "Where you put your data"

• Technologies for:

• site-level storage of data

• coordinating/merging servers into storage system

• site-level metadata

• local access

• [interaction with CEs / workflow]

Storage Classes

• Volatile

• Short-term resilient

• Long-term resilient

• Archival

Caches

Tier-1s
(Disk + Tape)

Tier-2s

Tier-2Cs (future)?

Tier-2s (output)

Tier-2s (local nonWLCG VOs?)

Tier-2Ds (future)?

Now Future

"Grid SEs"
• DPM

• dCache

• StoRM

• EOS

• "plain" XrootD

• Castor/ECHO

Distributed filesystems

• Early grid SEs (DPM and CASTOR, early dCache)
managed storage nodes like separate "silos", combining
them into a virtual namespace.

• This is done better now by a large number of modern
standards - Lustre, CEPH(fs), HDFS, GlusterFS, GPFS etc.

• These are also more sophisticated than most GridSEs (can
stripe files, erasure code/replicate blocks, provide POSIX
interfaces).

• StoRM was/is the "cutdown" grid "shim" solution to this.

Data Lakes
“If you think of a datamart as a store of bottled
water – cleansed and packaged and structured
for easy consumption – the data lake is a large
body of water in a more natural state. The
contents of the data lake stream in from a
source to fill the lake, and various users of the
lake can come to examine, dive in, or take
samples.”

James Dixon, 2010
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/

Data Lakes

So… it’s a distributed tape farm?

Data Lakes
• "Data Lake" now is an almost pure marketing term.

• In WLCG contexts:

• a consolidated storage system spanning multiple
geographical locations [and presenting one endpoint]

• probably geographically aware, probably needs to
reconstruct objects on request, probably provides
different “QoS” levels.

• eg: distributed EOS; distributed dCache [], distributed
DPM [Italy, GRIF], Dynafed [UK, Italy], NorduGrid T1…

Data Lakes

Server

Disks Disks

Disks Disks

Disks Disks

Disks Disks

Server

Site

Server

Disks Disks

Disks Disks

Disks Disks

Disks Disks

Server

Site

"Data Lake"

(Yes, you could mostly replace “Data Lake” with “Federated Storage” here and it would look
the same.)

eg: Architecture and prototype of a WLCG data lake for HL-LHC, CHEP 2018
https://indico.cern.ch/event/587955/contributions/2936867/attachments/1680424/2699527/CHEP2018-DataLake.pdf

Tinkering with resilience

(local) Filesystem

Controller

Servers

Sites/SEs

DPM w/ RAID DPM w/ ZFS CEPH(say) (Data Lake)

SE

Striping+EC/Replication Whole file replication only

Caches
• "Caches" are any form of volatile storage layer inserted into a

path to improve performance.

• Caches are useful only if data locality is important for your
workflow:

• imply a strong coupling between storage/data and work/jobs

• Broad enough to cover many types, with very different designs
and applicability.

• No list will be exhaustive, as a cache simply needs to improve on
at least one performance metric, relative to the layer it interposes.

Some Caches

JOB Remote
DATACache

JOB LOCAL
DATACache

JOB Cache

Slow
Reconstruction

Archive

Slow network

Contended
storage?

Fast local network

Fast I/O

Direct
access

Some Caches

JOB Remote
DATACache

JOB LOCAL
DATACache

JOB Cache

Slow
Reconstruction

Archive

Slow network

Contended
storage?

Fast local network

Fast I/O

Direct
access

• "Site local" cache:
• useful when:

• data is read more than once [cache opportunistic]
• data is read once but cache "pre-warmed" with expected data

• not useful when:
• data is read only once [cache opportunistic]

• extra cost incurred from caching + extra network hop
• jobs are not I/O latency limited at all, network optimised

• Cache performance area:
• improved locality / latency

Some Caches

JOB Remote
DATACache

JOB LOCAL
DATACache

JOB Cache

Slow
Reconstruction

Archive

Slow network

Contended
storage?

Fast local network

Fast I/O

Direct
access

• IO Performance cache:
• useful when:

• job is I/O bound w/ random I/O heavy workflow
• temp edits needed to local copy

• not useful when:
• job is not I/O bound [esp if job is streaming I/O, reads data once]

• Cache performance area:
• improved performance [expensive SSD/NVMe etc hardware]

Some Caches

JOB Remote
DATACache

JOB LOCAL
DATACache

JOB Cache

Slow
Reconstruction

Archive

Slow network

Contended
storage?

Fast local network

Fast I/O

Direct
access

• "Scratch copy" cache
• useful when:

• data is stored in slow to retrieve format [tape, EC stripes]
• data needs to be read repeatedly /

access model needs reconstruction on each hit
• not useful when:

• data is as easy to retrieve as from local disks
• Cache performance area:

• improved latency / locality
• reduced archive CPU/IO load/tape farm robot activity

Object Stores [and Cloud]

• "Cloud" storage solutions cut out POSIX guarantees for
efficiencies.

• Object Stores recapitulate many of the choices made
for Grid storage, for similar reasons (immutability of files
makes state consistency etc easy)

• Efficient use of Object storage for naïve grid workflows
needs a caching layer [as Objects do not maintain file
pointers], or changes to experiment code [less likely].

• Using "Cloud Storage"

Cloud Storage
• Support Cloud APIs, mostly Object Storage [S3, Swift?,

CDMI?]

• Two use cases:

• "decoupled Storage" == "archival/resilient copies"

• economic argument? TCO , flavour of money

• "coupled Storage" == "making data available to jobs in
same Cloud"

• requires work on job management / knowledge of
data requirements.

Cloud / Grid
Interoperability

• This is mainly a workload management problem!

• for Storage, we need a translation layer for:

• protocol [“grid” -> S3] if we don’t natively S3

• authorisation [X509 -> appropriate capability token]

• Dynafed can do this now

• WLCG “Tokens” will be easier to convert, see
Security talks.

DOMA
• DOMA are the WLCG project working on Data

Organisation/Management/Access.

• DOMA priorities directly contextualise and direct our own policies, via
WLCG.

• Most relevant to Brian's talk, but…

• DOMA directions imply:

• simpler storage [WebDAV might be sufficient?]

• "Data Lakes"/"geographically distributed storage systems"/ moving
resilience/QoS "upstream" from T2s.

• Token/Capability based authorisation

The Future?

"small" Tier-2s
• "Light" storage: does not need direct access protocols (from

outside).

• Can Should be POSIX (or Object Stores).

• Needs to be useful for local users / shared on existing local
resource.

• "Grid" access by:

• "Caching" [volatile, ideally prewarmed - implies workflow
management choices]

• Explicit local user data placement.

"large" Tier-2s
• "Heavy" storage: needs (Grid specific) access protocols for

managed data.

• Also must support our non-WLCG users: different protocols
used outside HEP [mostly S3, http(s)].

• At present, majority of UK "large" Tier-2s are:

• DPM [non-DOME], many large disk servers (of various ages).

• resilience by multiple copies / server level EC ("RAID")

• dCache (majority of CMS storage)

"large" Tier-2s
• Can we simplify / improve large Tier-2s?

• Storage costs:

• Resilience at Server, not Disk level [improves per file
performance via striping, improves resilience]

• Grid Layer complexity:

• No SRM, unified filesystem, so… no need for an extra
namespace layer?

• "Sunk Cost" / "Cost of transition"

"large" Tier-2s

• Doesn’t this look like:

• EOS [with all the distributed storage options turned on]

• Ceph [with RAL ECHO Xrootd shim on top]

• As an aside, an obvious name for a RAL Tape system
would be NARCISSUS

• dCache [might not be “simpler” than what we have
now…]

Tier-1

• [See Alastair's, Rob’s Tier-1 talks]

Wider scaling / consolidation

• Storage classes of Tier-2 data are (and will continue) evolving.

• Pressure on Experiment capacity requirements, worldwide,
due to cost/scaling issues.

• Now (ATLAS+CMS):

• (mostly) non-resilient replicas [of central data]

• temporary copies of local job outputs

• Future?:

• resilient copies of central data [extending from T1s]

Wider scaling / consolidation

• Future:

• resilient copies of central data [extending from T1s]

• DOMA: manage this w/ one endpoint ?EOS?Dynafed?
"Data Lake"

• potentially stripe / erasure code copies across
Tier-2/Tier-1 "lake" for online storage. [RAISites]

• [or replicate across "lake"]

Wider scaling / consolidation

• Future:

• resilient copies of central data [extending from T1s]

• DOMA: manage this w/ one endpoint ?EOS? "Data
Lake"

• potentially stripe / erasure code copies across
Tier-2/Tier-1 "lake" for online storage. [RAISites]

• [or replicate across "lake"]

Reduces resilience needed at sites; but
also requires smarter placement.

Decouples [large] Tier-2 sites from storage
requirements (as reconstruction done at

client)

All sites, ideally, need (volatile) storage for
reconstructed copies.

OPAQUE DATA LAKE
CONTRIBUTION

"INBOX
Cache"

"OUTBOX
Cache"

Wider scaling / consolidation

• Non-WLCG VOs

• with UK-controlled Data Lake, offer them same
access [needs work from GridPP/VOs for data flows
to sites]

• with WLCG-controlled Data Lake…?

• Tier-2s will still need (heavy?) storage at sites to
serve these data requirements.

Wider scaling / consolidation

• Tier-2 "heavy" requirements in this context:

• at least one of WebDav, Xrootd interface to uniform
storage.

• S3 interface?

• Tier-2s look more like object stores / byte store here
[something already true for, for example, Tier-2s SEs
accessed via Rucio]

Storage Group's Roles
• Tier-1 technology / FTS / Rucio (multiVO or otherwise)

• "non-WLCG" + IRIS support

• DIRAC? [DFC catalog / access]

• DOMA/VO liaisons

• Tier-2 technology migrations

• "non-WLCG" + IRIS support

• “Data Lake” work + management

Conclusions
• small Tier2s -> no grid storage / intelligent pre-filled caches

using locally useful POSIX filesystems.

• big Tier2s -> Grid Storage / simplify provision [shims on
distributed filesystems]. Object Store interfaces for storage
increasingly important.

• wider scale -> work needed, with DOMA, on Data Lake
single-endpoint UK-wide solution.

• also our interface to "Cloud storage"

• Moving away from "Grid-parochial" solutions is always best.

