Amazing GANs
By iRonhead
Create an Account on Kaggle
Join the Game
https://goo.gl/bfBC0b
or
https://kaggle.com/join/kkboxdatagame1706
Create Your Team
Find KKStream�on Facebook Now!
Routine
imironhead
Because
Everybody is making GANs
Prerequisite
I have only 35 minutes
Neural Networks
Vector
<22, 2, 8, 0>
Matrix
Wx + b
Activation, ReLU
<0, 1, 2, -1, -2>
<0, 1, 2, 0, 0>
Feedforward
W11, b11
W21, b21
Backpropagation
W12, b12
W22, b22
W11 => W12
b11 => b12
W21 => W22
b21 => b22
Stochastic Gradient Descent
W
Learning Rate
W
learning rate
Trained Neural Network
W11, b11
W21, b21
G(
) =>
Convolutional Neural Networks
Convolution
1
2
3
4
2
1
2
3
3
2
1
2
4
3
2
1
0
1
0
1
2
1
0
1
0
12
12
10
input
kernel / filter
output
10
Sobel Filter
*
=
1
0
-1
2
0
-2
1
0
-1
Gaussian Filter
*
=
Convolution with Multiple Kernels
input
kernel / filter�can be trained
output
ReLU
Deeper
Flatten
Trained Convolutional Neural Network
G( ) =>
Generative Adversarial Networks
The Universe of Vision
Collect Images
Generator Neural Network
?
Generator Neural Network
?
Discriminator Neural Network
Train the NN
Train Discriminator
Train Generator
Train Discriminator
Train Generator
Deep Convolutional
Generative Adversarial Networks
Generator
100 z
128
32
32
256
16
16
512
8
8
1024
4
4
3
64
64
G(z)
Discriminator
1
3
64
64
128
32
32
256
16
16
512
8
8
1024
4
4
LSUN Bedroom
Results
Energy Based�Generative Adversarial Networks
Generator for MNIST
128 z
256
64
32
16
32
32
16
16
8
8
4
4
G(z)
1
32
32
Auto-Encoder
16
16
2
8
8
4
8
8
4
16
16
2
1
32
32
x
1
32
32
Dec(Enc(x))
4
4
8
Enc(x)
bottleneck
Discriminator, an Auto-Encoder
16
16
2
8
8
4
8
8
4
16
16
2
1
32
32
x
1
32
32
Dec(Enc(x))
4
4
8
Enc(x)
bottleneck
Margin - Weak Generator
Margin - Strong Generator
Pulling Away
16
16
2
8
8
4
8
8
4
16
16
2
1
32
32
1
32
32
4
4
8
Enc(x)
MNIST
Results
Boundary Equilibrium
Generative Adversarial Networks
Generator, a Decoder
Discriminator, an Auto-Encoder
Boundary Equilibrium
CelebA
(´A`。)
Random Generated Faces
Generated Linear Interpolated Faces
Generated Bilinear interpolated Faces
Experiment on GANs
NAN
Logarithm Epsilon
Vanished Gradients
Where are the gradients?
Sigmoid
1
3
64
64
256
16
16
1024
4
4
Collapsed
Oops!
This is PyCon.�I have to Python.
Graph can be Partially Restored
Use tf.image
Image Summaries
Reshape
1
2
3
4
batch
1
2
3
4
reshape
1
2
3
4
split
1
2
3
4
concat
uint8
Use tf.gfile
Advices
Make your GAN life easier!
Why GANs
Ok!
GAN is Cool!
Then?
Gaze Estimation
Challenges
$$
Make Real Labeled Eyes
SimGAN
Thank You