## Today's Materials



 calculator • pencil notebook • glue



### Different Options for Solving One Equation

| CCSS Standards:<br>Addressing       | • 7.EE.B.4.a |
|-------------------------------------|--------------|
| CCSS Standards:<br>Building towards | • 7.EE.B.4.a |

#### Lesson 10



2019 Open Up Resources | Download for free at openupresources.org.

Let's think about which way is easier when we solve equations with parentheses!



### Today's Goals

□ For an equation like 3(x + 2) = 15, I can solve it in two different ways...

For equations with more than one way to solve, I can choose the <u>easier</u> way depending on the numbers in the equation.

### Algebra Talk: Solve Each Equation

Warm Up



100(x - 3) = 1,000

500(x - 3) = 5,000

O.O3(x - 3) = 0.3

O.72(x + 2) = 7.2

1/7 (x + 2) = 10/7

### Analyzing Solution Methods

## Activity 1Think Pair Share

Three students each attempted to solve the equation 2(x-9) = 10,but got different solutions.

Let's investigate their thinking.

### Begin with Quiet Work Time (5-10 min.)

#### Do you agree with Noah? Nooh's 2(x-9) = 10method 2(x-9)+9=10+9add 9 to each side 2x = 19 $2x \div 2 = 19 \div 2$ divide each side by 2 $x = \frac{19}{2}$

I disagree with Noah because 2(x-9) + 9 is not 2x. Noah should distribute the 2 before adding a number to each side.

#### Do you agree with Elena?

Elena's method

2(x-9) = 10apply the distributive property 2x - 18 = 102x - 18 - 18 = 10 - 18subtract 18 from each side 2x = -8divide each side by 2  $2x \div 2 = -8 \div 2$ x = -4

I disagree with Elena because 2x - 18 - 18 is 2x - 36, not 2x. Instead of subtracting 18, it would be better to add 18.

#### Do you agree with Andre?

Andre's method

2(x-9) = 10apply the distributive property 2x - 18 = 102x - 18 + 18 = 10 + 18add 18 to each side 2x = 28divide each side by 2  $2x \div 2 = 28 \div 2$ x = 14

I agree with Andre. All of his moves are valid. 14 makes the original equation true when substituted for X.

### **Solution Pathways**

Activity 2



## $\frac{\text{divide by 3 first}}{3(x + 2) = 21}$



 $\frac{\text{distribute the 3 first}}{3(x + 2)} = 21$ 

Work on the activity on the next slide, beginning on your own. Check in with your team as you work. (5-10 min.) For each equation, try to solve the equation using each method:

- dividing each side first
- applying the distributive property

Some equations are easier to solve by one method than the other...

When that's the case, <mark>stop doing</mark> the harder method and write down the reason you stopped!

### 2,000(x - 0.03) = 6,000

2(x + 1.25) = 3.5

 $\frac{1}{4}(4 + x) = \frac{4}{3}$ 

-10 (x - 1.7) = -3

5.4 = 0.3(x + 8)

| Let's Check!            |                    |
|-------------------------|--------------------|
| 2,000(x - 0.03) = 6,000 | x = 3.03           |
| 2(x + 1.25) = 3.5       | x = 0.5            |
| 1⁄4(4 + x) = 4/3        | $x = 1\frac{1}{3}$ |
| -10 (x - 1.7) = -3      | x = 2              |
| 5.4 = 0.3(x + 8)        | x = 10             |

What are the two main ways we can approach solving equations like the ones we saw today?

# 1. divide first 2. distribute first

What kinds of things do we look for to decide which approach is better?

- powers of ten
- operations that lead to whole numbers
- getting rid of fractions or decimals

How can we check if our answer is a solution to the original equation?

Substitute the answer for the variable to see if it makes the equation true!

## Today's Goals

- For an equation like 3(x + 2) = 15, I can solve it in two different ways:
  - by first dividing each side by 3
  - $\Box$  by first rewriting 3(x + 2) using the distributive property
- For equations with more than one way to solve, I can choose the easier way depending on the numbers in the equation.

### Solve Two Equations

Cool Down

### **Extra Practice**

## Let's keep practicing dividing or distributing first!

## Warm Up

# Find the solution. Divide or distribute first! 4(x + 5) = 25

### All Aboard the Math Train!





Each student will be assigned a problem.

You will need to become an "expert" at solving your problem. You will be moving around from seat-to-seat today, solving these equations.

- Exchange cards with your new partner.
- Solve the new problem.
- If you're confused, the problem's "expert" is sitting in front of you.
  (Use the questions on the back of the card to help your partner.)
- Collect your card when both partners are finished. Wait to move to the next seat!