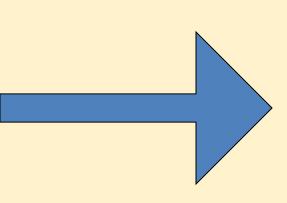
UKURAN STATISTIK

OLEH:

NURUL MISBAH, SKM, M.Pd.

UKURAN STATISTIK


- Distribusi Frekuensi adalah susunan data menurut kelas interval tertentu atau menurut kategori tertentu dalam sebuah daftar.
- Penyusunan distribusi frekuensi :
- Mengurutkan data
- Menentukan range
- Menentukan banyaknya kelas
- Menentukan panjang interval
- Menentukan batas
- Menentukan frekuensi kelas

Contoh menentukan kelas interval pada tabel distribusi frekuensi

USIA	FREKUENSI
20	5
21	6
21 22 23 24 25 26 27 28 29	13
23	4
24	7
25	7
26	7
27	5
28	3
29	4
	15
31	3
33	5
35	1

Membuat distribusi frekuensi:

- 1. Mencari rentang \rightarrow 35 20 = 15
- 2. n = 85
- 3. Menentukan banyak kelas \rightarrow k = 1 + 3,3 log n \rightarrow 7,6 \rightarrow 8
- 4. Menentukan panjang kelas \rightarrow **p** = 15/8 = 1,8 \rightarrow 2
 - Panjang interval kelas pertama = (20+2)-1 = 21
 - Panjang interval kelas kedua = (22+2)-1 = 23 dst....

KELOMPOK USIA	FREKUENSI
20 – 21	11
22 – 23	17
24 – 25	14
26 – 27	12
28 – 29	7
30 – 31	18
32 - 33	5
34 - 35	1

MK. Perawatan Komunitas

Nilai Tengah dan Standar Deviasi

A. Nilai Tengah

- Mean (nilai rata-rata)
- Median (nilai posisi paling tengah)
- Modus (nilai yang paling sering muncul)

A.1 Data yang tidak dikelompokkan

Adalah data yang menyatakan nilai atau angka dari masing-masing sampel.

Mean/ Rata-Rata Hitung

Mean adalah Nilai Rata-rata dari data yang ada Mean dari polpulasi diberi simbol μ (miu) Mean dari Sampel diberi simbol χ (eksbar) Rumus Mean :

 \overline{X} = nilai rata-rata $\sum X$ = penjumlahan dari nilai-nilai x (x_i s.d x_j) n = jumlah sampel

Contoh mean:

- Berat badan dari 5 orang mahasiswa adalah
 56, 62, 52, 48, dan 68 kg
- •Maka mean = 56+62+52+48+68 = 57,2 kg

Sifat dari mean:

- Merupakan wakil dr keseluruhan nilai
- Sangat dipengurhi oleh nilai ekstrim
- Nilai mean berasal dari semua nilai pengamatan

Median

- Median adalah nilai tengah dari yang ada setelah data diurutkan (di Arry)
- Median serin disebut rata-rata posisi
- Median disimbolkan dengan Md atau Me
- Jika jumlah data ganjil mediannya adalah data yang berada ditengah
- Jika jumlahnya genap mediannya hasil bagi jumlah dua data yang berada di tengah

Rumus :
$$Md = n + 1$$

Contoh:

Dari berat badan mahasiswa diatas diurutkan:

48, 52, 56, 62, 68

Maka posisi mediannya:

$$Md = 5 + 1 = 3$$

Jadi mediannya adalah urutan ke 3 yaitu 56

Apabila datanya genap terletak antara dua nilai contoh: 48, 52, 56, 62, 68, 70

maka nilai medinnya

$$Md = 56 + 62 = 54$$

Modus / Mode

Modus adalah nilai yang paling banyak ditemui dalam satu pengamatan.

Data pengamatan ada beberapa kemungkinan:

- Tidak ditemukan nilai modus (Amodus)
- Ditemukan satu nilai modus (Uni Modus)
- Ditemukan dua nilai modus (Bi modus)
- Lebih dari dua modus (Multi modus)

B. Standar Deviasi

Standard deviasi (Simpangan baku) adalah ukuran persebaran data. Simpangan ini bisa diartikan jarak rata-rata penyimpangan antara nilai hasil pengukuran dengan nilai rata-rata.

Dapat dihitung standar deviasi pada data yang tidak dikelompokkan maupun pada data yang dikelompokkan

1. Data Yang Tidak Dikelompokkan

Standar deviasi pada data yang tidak dikelompokkan dapat dihitung dengan menggunakan rumus:

Untuk data sampel:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

Untuk Data Populasi:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}$$

contoh soal

Selama 10 kali ulangan semester I mendapat nilai : 91, 79, 86, 80, 75, 100, 87, 93, 90, dan 88.

Berapa simpangan baku dari nilai tsb?

Jawab

Soal di atas menanyakan simpangan baku dari data populasi jadi menggunakan rumus simpangan baku untuk populasi.

Kita cari dulu rata ratanya : rata-rata = (91+79+86+80+75+100+87+93+90+88)/10 = 869/10 = 85,9

x_i	$\bar{x} - x_i$	$(\bar{\chi} - \chi_i)^2$
91	5,1	26,01
79	-6,9	47,61
86	0,1	0,01
80	-5,9	34,81
75	-10,9	118,81
100	14,1	198,81
87	1,1	1,21
83	-2,9	8,41
90	4,1	16,81
88	2,1	4,41
$\bar{x} = 85,9$		$\sum (\bar{x} - x_i)^2 = 456,9$

Kita masukkan ke rumus:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}} = \sqrt{\frac{456,9}{10}} = 6,759$$

Jika dalam soal menyebutkan sample (bukan populasi) misalnya dari 500 penduduk diambil 150 sample untuk diukur berat badannya... dst, maka menggunakan rumus untuk sample (n-1)

Rumus Simpangan Baku Untuk Data Kelompok

Misal data kelompok yang dinyatakan dengan x1,x2,x3,...,xn dan masing-masing mempunyai frekuensi fi,f2,f3,...,fn maka simpangan bakunya dapat dicari dengan rumus :

$$S = \sqrt{\frac{\sum_{i=1}^{n} f_i \left(x_i - \overline{x} \right)^2}{n-1}}$$

untuk populasi menggunakan rumus:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} f_i (x_i - \mu)^2}{n}}$$

Jika data kelompok tersebut terdiri dari kelas-kelas maka harus mencari nilai tengah dari masing-masing kelas untuk kemudian dicari rata-ratanya dengan cara mecari rata-rata data berkelompok

Contoh Soal

Diketahui data tinggi badan 50 mahasiswa adalah sebagai berikut

Tinggi Badan	Frekuensi (f _i)
131 – 140	2
141 – 150	8
151 – 160	13
161 – 170	12
171 – 180	9
181 – 190	6

hitunglah berapa simpangan bakunya

1. Kita cari dulu rata-rata data kelompok tersebut

Tinggi Badan	Frekuensi (f _i)	nilai tengah (x _i)	$(f_i) \times (x_i)$
131 – 140	2	135,5	271
141 – 150	8	145,5	1164
151 – 160	13	155,5	2021,5
161-170	12	165,5	1986
171 – 180	9	175,5	1579,5
181 – 190	6	185,5	1113
	$\sum f_i x_i$	0.836	7022
	Rata-rata =	$= \frac{\sum f_i x_i}{\sum f_{i}}$	140,44

2. Setelah ketemu rata-rata dari data kelompok tersebut kita bikin tabel untuk memasukkannya ke rumus simpangan baku

Tinggi Badan	Nilai tengah (x_i)	Frekuensi (f_i)	$(x_i - \bar{x})$	$(x_i - \bar{x})^2$	$f_i(x_i-\bar{x})^2$
131 - 140	135,5	2	-4,94	24,405	48,81
141-150	145,5	8	5,06	25,60	204,83
151-160	155,5	13	15,06	226,80	2.948,45
161-170	165,5	12	25,06	628,00	7.536,04
171-180	175,5	9	35,06	1.229,20	11.062,83
181 - 190	185,5	6	45,06	2.030,40	12.182,42
		50	$\sum f_i(t)$	$(x_i - \bar{x})^2$	33.983,38

Simpangan Baku =
$$\sqrt{\frac{33.983,38}{50}}$$
 = 26,07

Latihan soal 1

Tentukanlah range, banyak kelas, dan kelas interval dari data BB 60 orang ibu hamil pada tabel berikut ini

BB ibu hamil	frekuensi
50	9
49	6
52	3
48	5
59	6
60	4
34	8
45	7
55	4
60	3
41	3
40	2

Latihan soal 2

Tentukanlah mean, median dan modus serta standar deviasi dari data umur Kepala Keluarga sebagai berikut: 45, 35, 42, 50, 35, 41, 34, 37, 29, 35, 30, 25, 51, 25, 24, 32, 43, 54, 40, 52.

Selamat bekerja

Sekian TERIMA KASIH

Power point ini bisa di download Di alamat blog: nurulmisbahskm.blogspot.com