Fixed-Point Maths and Libraries

Michael Hopkins

SpiNNaker Workshop, $5^{\text {th }}$ October 2017

MANCHESTER Overview

1. Numerical calculation on SpiNNaker
2. ISO/IEC 18037 types and operations
3. A simple example
4. Some practical considerations
5. Libraries currently available
6. An example using the libraries
7. Using fixed-point to solve ODEs
8. Future directions

MANCHESTER Numerical calculation on SpiNNaker

- No floating point hardware on SpiNNaker
- Software floating point available but too slow for most use cases (and larger binaries)
- Until recently, has needed hand-coded fixed point types and manipulations
- This approach not transparent so can be prone to maintenance issues \& mysterious bugs
- More difficult than necessary for developers to translate algorithms into source code
- ISO draft 18037 for fixed point types and operations seen as a good solution

MANCHESTER ISO 18037 types and operations

- Draft standard for native fixed point types \& operations used like integer or floating point
- Currently only available on GNU toolchain >= 4.7 and ARM target architecture
- 8-, 16-, 32 and 64-bit precisions all available in (un-)saturated and (un-)signed versions
- accum type is 32-bit 'general purpose real'; we support io_printf() with s16.15 \& u16.16
- fract type is 16 -bit in [0,1]; we support io_printf() with s0.15 \& u0.16
-Operations supported are:
- prefix and postfix increment and decrement operators (++, --)
- unary arithmetic operators (+, -, !)
- binary arithmetic operators (+, -, *, /)
- binary shift operators (<<, >>)
- relational operators (<, <=, >=, >)
- equality operators (==, !=)
- assignment operators (+=, -=, *=, /=, <<=, >>=)
- conversions to and from integer, floating-point, or fixed-point types

```
MANCHESTER A simple example
-#include <stdfix.h>
#define REAL accum
-#define REAL_CONST( x ) x##k
•REAL a, b, c = REAL_CONST( 100.001 );
-accum d = REAL_CONST( 85.08765 );
int c_main( void )
for( unsigned int i = 0; i < 50; i++ ) {
a = i * REAL_CONST( 5.7 );
b = a - i;
if( a > d ) c = a + b;
else c -= b;
io_printf( IO_STD,
    "\n i %u a = %9.3k b = %9.3k c = %9.3k", i, a, b, c );
    }
return 0;
```


MANCHESTER Some practical considerations

- Range \& precision e.g. for accum (s16.15) must have $0.000031<=|x|<=65536$
- Still need to avoid divides in loops as these are slow on ARM architecture
- saturated types safe from overflow but significantly slower
- Need to remember that numerical precision is absolute rather than relative
- Literal constants require type suffix - simplest way is via macro REAL_CONST()
- Don't forget to \#include <stdfix.h>
- Disciplined use of REAL and REAL_CONST() macros can parameterise entire code base
- Be careful to use the correct type suffix otherwise floating-point will be assumed

$\underset{1824}{\operatorname{MANCHESTR}}$ Libraries currently available - 1

1) random. h - suite of pseudo random number generators by MWH

Provides three high quality uniform generators of uint32_t values; Marsaglia's KISS 32 and KISS 64 and L'Ecuyer's WELL1024a.

- All three 'pass' the very stringent DIEHARD, dieharder and TestU01 test suites
- Trade-offs between speed, cycle length and equi-distributional properties
- Available in both simple-to-use form and with full user control over seeds

Have used these Uniform PRNGs as the basis for a set of Non-Uniform PRNGs including currently the following distributions:

- Gaussian
- Poisson (optimised for small rates at the moment)
- Exponential
...with more on the way. Let us know your requirements and we will try to help.

$\underset{1824}{\text { MANCHESTER }}$ Libraries currently available - 2

2) stdfix-full-iso.h \& stdfix-math.h - ISO \& transcendental functions by DRL

Fill in the gaps in the GCC implementation of the ISO draft fixed point maths standard and some extensions:

- Standardised type conversions between fixed point representations
- Utility functions for all types i.e. $\operatorname{abs}(x), \min (x), \max (x)$, round $(x), \operatorname{countls}(x)$
- Mechanism for automatically inferring the right argument type (uses GNU extension)

Fixed point replacements for essential floating point libm functions i.e. $\operatorname{expk}(x)$, $\operatorname{sqrtk}(x)$, $\operatorname{logk}(x), \operatorname{sink}(x), \operatorname{cosk}(x)$ and others such as $\operatorname{atank}(x), \operatorname{powk}(x, y), 1 / x$ on the way

- Hand-optimised for speed and accuracy on ARM architecture
- 10-30x faster than libm calls, hence feasible for use inside loops if necessary

$\underset{1824}{\text { MANCHESTER }}$ An example using the libraries

```
•accum a, b, c, d;
-uint32_t r1;
-unsigned fract uf1;
-
•init_WELL1024a_simp(); // need to initialise WELL1024a RNG before use
-
-for( unsigned int i = 0; i < 22; i++ ) {
\bullet
- r1 = WELL1024a_simp(); // draw from Uniform RNG
uf1 = (unsigned fract) ulrbits( r1 ); // convert to unsigned fract
draw from Std Gaussian distribution using MARS64
    a = gaussian_dist_variate( mars_kiss64_simp, NULL );
do some calculations on a and then log()
    b = logk( absk( a * REAL_CONST( 100.0 ) ) );
-// sqrt() of value drawn from Exponential distribution using WELL1024a
    • c = sqrtk( exponential_dist_variate( WELL1024a_simp, NULL ) );
        d = expk( (accum) ( i - 10 ) ); // exp() from -10 to 11
```

 - io_printf(IO_STD, "\n i \%4u
 - uf1=[Uniform\{*\}]= \%8.6R \(a=[G a u s s\{*\}]=\frac{\circ}{\circ} 7.3 \mathrm{k}\) b=[ln(abs(100 a))]= \(\% 7.3 \mathrm{k}\)
 - \(c=[\) sqrt (Exponential\{*\}) \(]=\frac{\circ}{\circ} 7.3 \mathrm{k} \quad \mathrm{d}=[\exp (\mathrm{i}-10)]=\% 10.3 \mathrm{k}\) " , i, uf1, \(\left.\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\right)\);
 - \}

$\underset{1824}{\text { MANCHESTER Using fixed-point to solve ODEs - } 1}$

- Simulating neuron models usually means solving Ordinary Differential Equations (ODEs)
- This ranges from very easy (current input LIF has simple closed-form) solution to very challenging i.e. Hodgkin-Huxley with 4 state variables, nonlinear and very 'stiff' ODE
- Numerical calculations are required with a balance between accuracy \& efficiency
- With care and attention to detail, fixed-point can be used to get very close to floating-point results. However, models with more complex behaviour are a significant challenge
- A new approach called Explicit Solver Reduction (ESR) makes this easier in many cases and is described in: Hopkins \& Furber (2015), "Accuracy and Efficiency in Fixed-Point Neural ODE Solvers", Neural Computation 27, 1-35
- Good results found for Izhikevich neuron at real-time simulation speed \& 1 ms time step

MANCHESTER Using fixed-point to solve ODEs - 2

```
ESR algebraic reduction of the combination of Izhikevich neuron model and
Runge-Kutta 2 nd order midpoint method. Hand-optimised interim variables and
arithmetic ordering for balance between speed and accuracy. See Neural Computation
paper for more details.
•* /
•static inline void _rk2_kernel_midpoint( REAL h, neuron_pointer_t neuron,
    REAL input_this_timestep ) {
to match Mathematica names
    REAL lastV1 = neuron->V;
    REAL lastU1 = neuron->U;
    REAL a = neuron->A;
    REAL b = neuron->B;
    generate common interim variables
    REAL pre_alph = REAL_CONST(140.0) + input_this_timestep - lastU1;
    REAL alpha = pre_alp\overline{h}
        + ( REAL_CONST(5.0) + REAL_CONST(0.0400) * lastV1 ) * lastV1;
    REAL eta = lastV1 + REAL_HALF( h * alpha );
    could be represented as a long fract but need efficient mixed-arithmetic functions
    REAL beta = REAL_HALF( h * ( b * lastV1 - lastU1 ) * a );
    update neuron state
    neuron->V += h * ( pre_alph - beta
                                + ( REAL_CONST( 5.0) + REAL_CONST(0.0400) * eta ) * eta );
    neuron->U += a * h * ( -lastU1 - beta + b * eta );
```


MANCHESTER Future directions

- Optimise operations on differing fixed point types; accum * long fract already done
- Add to stdfix-math (e.g. new argument types and special functions)
- Add to random (e.g. longer cycle uniform PRNG and more non-uniform distributions)
- New libraries such as probability distributions to allow Bayesian inference tools
- io_printf() to be extended to more types such as long fract, unsigned long fract
- Linear Algebra operations such as matrix multiply, SVD and other decompositions
- SpiNNaker architecture potentially good choice for massively parallel algorithms e.g. MCMC

