
Facebook Infer
Dhruv Maroo

https://fbinfer.com/

What is Infer?

● Infer is a static analysis tool for programs written in Java, C++, Objective-C
and C

● It’s developed by Facebook (or Meta) and written using OCaml
● Infer uses a modular analysis technique, useful for analyzing small code

changes
● Infer uses separation logic and bi-abduction to do this
● Infer.AI is a relatively newer general analysis engine which uses abstract

interpretations

https://github.com/facebook/infer

Separation Logic

● Extension of Hoare logic
● Introduces a new operator (*), known as separating conjunction
● Separating conjunction is used to refer to disjoint heaps
● Reasons about programs using frame rule
● Frame rule states that if a program executes safely in a small state, it can also

execute in a bigger state, where the additional state will stay unaffected
● Side condition for frame rule requires that the program does not modify any

free variables in the additional state
● This allows for modular analysis of the programs

https://en.wikipedia.org/wiki/Separation_logic

Bi-abduction

● Used to find that “small” and the “big” state required for separation logic
● Does this by finding a frame and an anti-frame to be used for the frame rule
● This, in combination with separation logic, forms the mathematical base for

Infer and it’s analysis

https://fbinfer.com/docs/separation-logic-and-bi-abduction/

Analyzers provided

● Infer provides many analyzers and issues
● There are analyzers to detect memory issues, concurrency issues, compute

complexity, program analysis
● Some analyzers use code annotations in their analysis and are only available

for some of the languages
● Some analyzers are also unmaintained and/or deprecated

Annotation Reachability

● Checks if any @Expensive annotated function can be reached from any
@PerformanceCritical function

● Annotations in C/C++ done using a JSON file which specifies which functions
are expensive and which are critical

● Supported for C/C++/ObjC, Java, C#/.NET

https://fbinfer.com/docs/checker-annotation-reachability

InferBO

● InferBO (BO := buffer overrun) checks for buffer overflows and out of bounds
accesses

● Supported for C/C++/ObjC, Java, C#/.NET

https://fbinfer.com/docs/checker-bufferoverrun

Runtime Complexity Analysis

● Computes the time complexity of functions
● Cost analysis statically estimates an upper bound on the worst-case

execution cost of a program
● Computes the cost of instructions and how many times it is executed for each

node in the CFG
● The total cost of the node is the product of these two
● Supported for C/C++/ObjC, Java, C#/.NET

https://fbinfer.com/docs/checker-cost

Eradicate

● Check @Nullable annotations for Java and C#/.NET programs
● @Nullable annotation used for arguments which could be null and thus

need to be handled accordingly
● Performs flow-sensitive analysis

https://fbinfer.com/docs/checker-eradicate

Inefficient keySet Iterator

● Checks for inefficient uses of iterators that iterate on keys then lookup their
values, instead of iterating on key-value pairs directly

● Supported for Java, C#/.NET
● Not working, even on the provided example in Infer docs

https://fbinfer.com/docs/checker-inefficient-keyset-iterator

Liveness

● Detects dead stores
● Supported for C/C++/ObjC
● Pretty common feature in IDEs now

https://fbinfer.com/docs/checker-liveness

Loop Hoisting

● Detects opportunities to hoist function calls that are invariant outside of loop
bodies for efficiency

● Uses purity analysis to determine function purity
● Supported for C/C++/ObjC, Java, C#/.NET
● No demo, since the loop hoisting seems to be broken
● Most likely because the purity analysis is experimental

https://fbinfer.com/docs/checker-loop-hoisting

Pulse

● Performs interprocedural memory safety analysis
● Only reports errors when all conditions on the erroneous path are true

regardless of input (conservative analysis)
● Meant to replace original bi-abduction analyzer of Infer
● Supported for C/C++/ObjC, Java, C#/.NET
● Can detect

○ Constant address dereferences
○ Memory leaks
○ NULL dereferencing
○ Use-after-free and other lifetime memory issues

https://fbinfer.com/docs/checker-pulse

Purity

● Detects pure (i.e. side-effect-free) functions
● Performs inter-procedural analysis
● Requires alias-analysis, which is not implemented entirely correctly in Infer
● For now, they use InferBO’s alias-analysis
● Runtime complexity analysis and loop hoisting requires purity analysis
● Experimental for all the languages

https://fbinfer.com/docs/checker-purity

RacerD

● Performs thread-safety analysis
● Analysis is (almost) sound, but not complete
● We can use annotations to help RacerD in analysis
● Again, because of poor alias-analysis, it misses race conditions for aliasing

variables
● Supported for C/C++/ObjC, Java, C#/.NET

https://fbinfer.com/docs/checker-racerd

Starvation

● Detects various kinds of situations when no progress is being made because
of concurrency errors

● Also detects deadlocks
● Supported for C/C++/ObjC, Java, C#/.NET

https://fbinfer.com/docs/checker-starvation

Uninitialized Value

● Warns when values are used before having been initialized
● Common feature in modern IDEs as well
● Supported for C/C++/ObjC

https://fbinfer.com/docs/checker-uninit

Deprecated but notable analyzers

● Immutable Cast: Detects object cast from immutable types to mutable types
● AST Language (AL): Declarative linting framework over the Clang AST
● printf() Argument Types: Detect mismatches between the Java printf

format strings and the argument types

https://fbinfer.com/docs/checker-immutable-cast
https://fbinfer.com/docs/checker-linters
https://fbinfer.com/docs/checker-printf-args

Similar frameworks/tools

● SonarQube
● Coverity
● ReSharper
● CodeQL
● PVS-Studio
● Many of these are proprietary tools
● Commonly used in IDEs as extensions (PVS, ReSharper) and in CI/CD for

finding defects (Coverity, CodeQL)

https://en.wikipedia.org/wiki/SonarQube
https://en.wikipedia.org/wiki/Coverity
https://www.jetbrains.com/resharper/
https://codeql.github.com/
https://pvs-studio.com/en/pvs-studio/

Questions & Answers

