Rescue Simulation

— RRGGBB —

- A POSTERIORI e

i \{" Play - Experience - Learn ’E/ -

e

RRGGBB =

T
th
RI b

Play - Experience -

Strategy

You get more points when you
deposit sets of Red, Cyan, and
Black objects.

. Fully Loaded
A single set is referred to as RGB ~. Depositing...
. . *. Deposited successfully +155
and worth 90 points, while 2 sets - RRGGBB Deposited +180

are called RRGGBB and worth
180 points.

So, only pickup and deposit
RRGGBB sets.

e

State Machines (Recap) Py

A POSTERIO
L

th
We can think of Strategies as Algorithms. o

And we can define algorithms in terms of State Machines.

Machine States are based on the value of one or more variables, and are used
to determine the current tactic.

In the case of “Wall-Follow to Deposit” strategy, the algorithm had 2 states
based on LoadedObjects variable:

State Behavior / Tactic

LoadedObjects < 4 Search for Objects

LoadedObjects >=4 | Follow Walls to Collection Box

State Machines - Table or Graph s Fosrescons

One way to represent a State Machine is by Table.

Looking For
Another way is through a Graph.

Objects

LoadedObjects >0

State Behavior / Tactic

LoadedObjects == e Search for Objects,
Ignore Collection Box (and Traps)

Opportunistic

’ Will deposit if
Exploration

stumbles on it

LoadedObjects < 4 e Search for Objects
e Deposit, if you see the Collection Box

LoadedObjects >=4

LoadedObjects >= 4 e Find & Follow Wall to Collection Box
e Pickup Object, if you happen to see one

Looking For
Deposit

e

RRGGBB - State/Transition Graph e

18 :
ORI h
Looking For
Objects

Always collect exactly 2 Red, il BRE=R
2 Cyan, and 2 Black Objects |
Ignore Red Ignore Cyan Ignore Black
RRGGBB

before making any deposit.
e how many objects we (fully loaded)

pickup for each color Looking For
Deposit

Algorithm

For this algorithm, we need
to keep track of:

Not just LoadedObjects.

e

RRGGBB - State/Condition/Action Table A posTERIOR

T
th
RI b

Red <2 CS sees Red Pickup

Red =2 CS sees Red Ignore
Cyan <2 CS sees Cyan Pickup
Cyan == 2 CS sees Cyan Ignore
Black < 2 CS sees Black Pickup
Black == 2 CS sees Black Ignore
Red < 2 || |

Cyan <2 || CS sees deposit Ignore
Black < 2

Red == 2 &&

Cyan == 2 && CS sees deposit Bank
Black == 2

ﬁ_t—o
Creating Variables ——l

As mentioned, for this algorithm, we need to keep track of:
e how many objects we pickup for each color

Not just LoadedObjects.

Therefore, we need to create new Variables:

e |LoadedRed
e LoadedCyan
e LoadedBlack

Creating Variables

Under the Al panel, click the Var
button, to open the:

Add Variables window

You can look at existing
variables - we have only used
LoadedObjects so far, and
printed Duration for reference.

Variables like SuperObj* will be
discussed in other modules.

A POSTERIORI

Play - Experience - Learn

P
@ basic - Al Development Panel

New Variable
=4l | B

Basic
InitialValue
Name

Name
The name of the variable

Add New Variable

Variable List

Duration
SuperDuration

SuperObj_Num
SuperObj_X
SuperObj_Y
Teleport
LoadedObjects

Statement Type

(0} ® Super

e

Variable Property

sl |8

Delete Variable

Creating Variables

Let's create LoadedRed - a new
variable to keep track of our #
of Red Objects loaded.

Change the Name to our new
variable name.

InitialValue should be zero(0),
because we start with no Red
objects loaded.

Then, click Add New Variable.

(® Add Variables

Variables

New Variable
Basic

InitialValue 0
Name LoadedRed

Name
The name of the variable

Add New Variable

Vanable List

Duration

SuperDuration

bGameEnd

CurAction

CurGame

SuperObj_Num
X

LoadedObjects

N

A POSTERIORI

Play - Experience - Learn

Variable Property

= E B

o

Delete Variable

Creating Variables

Now your new variable,
LoadedRed, is added to the
Variable List.

If you click on it, you can
see its InitialValue setting.

You can also Delete it, if
necessary.

Press OK to persist this
change to the Variable List.

© £ Varshle: it MRS & &

Varniables

New Variable
=l | B
Basic
InitialValue
Name

Name

The name of the variable

Add New Variable

Vanable List

Duration
SuperDuration
bGameEnd
CurAction
CurGame
SuperObj_Num
SuperObj_X
SuperObj_Y
Teleport

Oadedup|e LS
LoadedRed I

N

A POSTERIORI

Play - Experience - Learn

Variable Property
g Ai{:'\!’lr E
Basic
InitialValue 0
Name LoadedRed

Name
The name of the vaniable

Delete Variable |

Creating Variables

Now your new variable,
LoadedRed, is added to the
Variable List.

If you click on it, you can
see its InitialValue setting.

You can also Delete it, if
necessary.

Press OK to persist this
change to the Variable List.

© £ Varshle: it MRS & &

Varniables

New Variable
=l | B
Basic
InitialValue
Name

Name

The name of the variable

Add New Variable

Vanable List

Duration
SuperDuration
bGameEnd
CurAction
CurGame
SuperObj_Num
SuperObj_X
SuperObj_Y
Teleport

Oadedup|e LS
LoadedRed I

N

A POSTERIORI

Play - Experience - Learn

Variable Property
g Ai{:'\!’lr E
Basic
InitialValue 0
Name LoadedRed

Name
The name of the vaniable

Delete Variable |

Updating New Variables

Now we can try to
update LoadedRed,
whenever we pickup a
Red Object.

Choose one of your
Pickup Red statements
(there should be one for
Left and one for Right).

Click Advanced Action.

A POSTERIORI

Play - Experience - Learn

>
(® basic - Al Development Panel

Conditions

2 D@ ?
e & B W C

World 2 D02 printf ("Picking up Red Left.

| World1 Statements
@ Deposit

L JPickup Red - Left

@ Pickup Cyan - Left
® Pickup Cyan - Right
@ Pickup Black - Left
@ Pickup Black - Right
® Avoid Wall

® Fwd

Statement Type

(o] ® Super

Duration = %d\n", Duration) ;

Advanced Action
printf("Picking up Red

Updating New Variables

A POSTERIORI

Play - Experience - Learn

»
‘ basic - Al Development Panel

[B E
Vo &8 B Mt C

Add the appropriate line
of code to add 1 to
LoadedRed'’s value. z

World

There are two common
ways to do that, as
shown.

Click OK to save the
change.

2 ID 02

World1 Statements
@ Deposit

@ Avoid Trap

@
@ Pickup Red - Right
@ Pickup Cyan - Left
@ Pickup Cyan - Right
@ Pickup Black - Left
@ Pickup Black - Right
@ Avoid Wall

® Fwd

?

Conditions

Min Max

%) Ukraconic Sensors

LoadedRed = LoadedRed + 1;

printf ("Now LoadedRed = %d\n"

Statement Type

(0] @® Super

® Non-Interrunt

", Duration) ;

, LoadedRed) ;

Advaliccu Acuon

printf("Pickup Red Left \\g

Syntax Errors A BosrERIOR

If you forget to add a semicolon(;) or make some spelling mistake in the code,
you will get a Syntax Error popup, and you will not be able to advance - you
won't be able to Save, Build, or change other statements in your program.

Syntax Error : Advanced Condition or Action!
error: 'LoadedRed' undeclared

NOTE: | forgot to press OK after Adding New Variable in the Variable List window, so it
didn't recognize this variable name.
| had to go back and add it properly, in order to proceed.

TEST TEST TEST

Before doing this for the
other Red statement, or
the rest of the Objects,
let's TEST!

Make sure you can Build
successfully.

Then Load your new Al
and press Play.

A POSTERI

Play - Experience - Le

ORI
Learn

https://docs.google.com/file/d/1SSRuZYntW4qa49WUDqqi0IMHFhBeS2WE/preview

The Bug

When you ask your Robot to do
something for 3 seconds, it
turns that into:

3000 ms / 60 ms per cycle =
50 cycles of 60ms each

For each cycle, it calls the
Advanced Action code again...

So we end up executing:
LoadedRed = LoadedRed + 1;
50 times... Until Duration is 0!

A POSTERIORI

Play - Experience - Learn

(from 49 to 0; 50 total cycles)

Picking up Red Left. Duration = 49
Now LoadedRed =1

Picking up Red Left. Duration = 48
Now LoadedRed = 2

Picking up Red Left. Duration = 47
Now LoadedRed = 3

Picking up Red Left. Duration =3
Now LoadedRed =47

Picking up Red Left. Duration = 2
Now LoadedRed =48

Picking up Red Left. Duration = 1
Now LoadedRed =49

Picking up Red Left. Duration =0
Now LoadedRed = 50

e

. AT
The Fix A POSTERITOR

T
th
RI b

Whenever you add FindObject Action to a statement, inside the code internally
it is adding this logic:

1f (Duration == 1) LoadedObjects+t++;

That means, between Duration 49 down to O, it will only execute
LoadedObjects++ (or LoadedObjects = LoadedObjects + 1) only once!

When? Only when the Duration is 1, just before the full action is over...

So, let's do the same for LoadedRed...

The Fix A POSTERTORT

[3
® rrggbb - Al Development Panel =B 8

Correct the appropriate DB m 9 Conos Satement Type

. 3 D dey Min (] @ Super
|Ine Of COde to add one i) (o 15 1) B ") Ultrasonic Sensors @ Non-Interrupt
more to LoadedRed only wodd (10 (2 10 St g : -

= World1 Statementz| i ki ¢ Duratlon = %d\n", Duration) ;
h D M s @ Deposit (Duration == 1) jLoadedRed = LoadedRed + 1;
when Duration == 1. @ Avid Trap pome— ", LoadedRed) ;

®

@ Pickup Red - Rig

. @ Pickup Cyan - L|
Coding Notes B oo
= @ Pickup Black - L|

@ Pickup Black - F

= . means “set to” ® il
==:means “is equal?”

Click OK to save

printf ("Picking up Red \‘0)

TEST TEST TEST

Before doing this for the
other Red statement, or
the rest of the Objects,
let's TEST!

Now LoadedRed seems
to update correctly!

A POSTERIORI

Play - Experience - Learn

Debugging Info

?\F’Pr—r“ﬁ_"_

https://docs.google.com/file/d/1CMFskUEMRpWSTRE-FFxlt_2D_EfvvH6U/preview

b
Now Add a Condition A POSTERTORT

0 rrggbb - Al Devel el) —m

We should only pickup Red, > B @ 2 Condtons ottt Troo
if LoadedRed < 2. Y — © Detautt ® super

World 2 D02

So, add that condition to = ® Mo S
® Avoid Trap

the Pickup statement. © EETTE]
@ Pickup Cyan - Left

@ Pickup Cyan - Right
@ Pickup Black - Left

Make sure Build succeeds. ® Picup lack- i

® rFud

Advanced Conditions Advanced Action
& printf("Picking up Red '\’ﬁ

e

TESTTEST TEST —l

Build and TEST:

e Pickup 2 Reds
e Make sure it won't pick up another one

If you only coded Left side, make sure you only test from Left side...

Otherwise you will get false results:
Robot won't check condition, and it won't update LoadedRed either...

r°

Duplicate Logic to Other Side s Posressos

T
th
RI b

Duplicate the LoadedRed Advanced Condition &

. . Vanable List
Advanced Action for both sides Pickup Duration
SuperDuration
statements. bGameEnd

CurAction
CurGame

Then add LoadedCyan and LoadedBlack gzgggg:i:;'um
variables, and add similar logic for those two color

SuperObj)_Y
Teleport
adObi

Objects. LoadedRed
LoadedCyan
LoadedBlack

Test that the Robot will only pickup:

e 2Red, 2 Cyan, and 2 Black Objects

Deposit Advanced Condition ——l

In our example RRGGBB strategy, you should only Deposit if all 3 are True:

e LoadedRed ==
e LoadedCyan ==
e |oadedBlack ==

You can add that aggregate condition to Deposit statement using this
Advanced Condition:
LoadedRed == 2 && LoadedCyan == 2 && LoadedBlack ==

Deposit Advanced Condition 4 BosreRIOR

I i R
® rrggbb - Al Development Panel =B X

v M 2 ‘Conditions Statement Type

— sse i (0] Super
Vo 8 B W1 C ® Sup
”) @ Non-Interrint

Since the only way you
World |
COUld ever get thls = World1 Statemen

e , ® E
condition is when you're E
?c up Red - F
also fully loaded, you can 8 Fknom
. . o ickup Black -
also simplify this to: g

® Fwd

LoadedObjects == 6

Deposit Advanced Action

Also we need to remember
to clear all of our variables
after Depositing.

Set all 3 variables back to O.

LoadedBlack = LoadedCyan = LoadedRed = O0;

N (R

A POSTERIORI

Play - Experience - Learn

° rrggbb - Al Development Panel

(2
Vr

) ? Conditions Statement Type

=E

World 2 Ibo

World1 Statements
L Deposit|

@ Avoid Trap

@ Pickup Red - Left| |
@ Pickup Red - Rig| |
@ Pickup Cyan - Le||
@ Pickup Cyan-Ri
@ Pickup Black - L¢/|
@ Pickup Black - R} |
@ Avoid Wall
® Fwd

Min Max (o)

printf ("Depositing %d objects. Duration = %d\n",
LoadedObjects, Duration) ;

oadedBlack = LoadedCyan = LoadedRed = 0;‘

Advanced Conditions
LoadedBlack — 284 LoadedCyan - (&

Deposit Advanced Action A posTERION

@ rrggbb - Al Development Panel (S[ET%™
;) ? Conditions Statement Type
Do we need 5 B il G Min Max R
if (Duration == 1)? o () £ 0 e e N

= World1 Statements {lf.cadedBlack = LoadedCyan = LoadedRed = 0;|
L Deposit|
. h d @ Avoid Trap
T t t t @ Pickup Red - Lefi |
est without, and see... 8 Penrie- Lo
@ Pickup Cyan - Le
@ Pickup Cyan-Ri
@ Pickup Black - L¢| |

@ Pickup Black - R} |
@ Avoid Wall
® Fwd

if (Duration == 1)
LoadedBlack = LoadedCyan = LoadedRed = O;

Advanced Conditions

Full Example

Build and test the
full algorithm.

You can fold the
“Follow Wall When
Fully Loaded”
strategy into this
algorithm as well.

A POSTERIORI

Play - Experience - Learn

SuperObj_Num

SuperObi_X
SuperObj_Y
Teleport
LoadedObjects

https://docs.google.com/file/d/1pgx0F3cPKHZf0pncIrmEtHQWFEILEI8u/preview

