
Rescue Simulation
RRGGBB

RRGGBB
Strategy

You get more points when you
deposit sets of Red, Cyan, and
Black objects.

A single set is referred to as RGB
and worth 90 points, while 2 sets
are called RRGGBB and worth
180 points.

So, only pickup and deposit
RRGGBB sets.

State Machines (Recap)
We can think of Strategies as Algorithms.
And we can define algorithms in terms of State Machines.

Machine States are based on the value of one or more variables, and are used
to determine the current tactic.

In the case of “Wall-Follow to Deposit” strategy, the algorithm had 2 states
based on LoadedObjects variable:

State Behavior / Tactic

LoadedObjects < 4 Search for Objects

LoadedObjects >= 4 Follow Walls to Collection Box

State Machines - Table or Graph
One way to represent a State Machine is by Table.
Another way is through a Graph.

State Behavior / Tactic

LoadedObjects == 0 ● Search for Objects,
● Ignore Collection Box (and Traps)

LoadedObjects < 4 ● Search for Objects
● Deposit, if you see the Collection Box

LoadedObjects >= 4 ● Find & Follow Wall to Collection Box
● Pickup Object, if you happen to see one

RRGGBB - State/Transition Graph

Algorithm
Always collect exactly 2 Red,
2 Cyan, and 2 Black Objects
before making any deposit.

For this algorithm, we need
to keep track of:

● how many objects we
pickup for each color

Not just LoadedObjects.

RRGGBB - State/Condition/Action Table

Creating Variables

As mentioned, for this algorithm, we need to keep track of:

● how many objects we pickup for each color

Not just LoadedObjects.

Therefore, we need to create new Variables:

● LoadedRed
● LoadedCyan
● LoadedBlack

Creating Variables

Under the AI panel, click the Var
button, to open the:

Add Variables window

You can look at existing
variables - we have only used
LoadedObjects so far, and
printed Duration for reference.

Variables like SuperObj* will be
discussed in other modules.

Creating Variables

Let’s create LoadedRed - a new
variable to keep track of our #
of Red Objects loaded.

Change the Name to our new
variable name.

InitialValue should be zero(0),
because we start with no Red
objects loaded.

Then, click Add New Variable.

Creating Variables

Now your new variable,
LoadedRed, is added to the
Variable List.

If you click on it, you can
see its InitialValue setting.

You can also Delete it, if
necessary.

Press OK to persist this
change to the Variable List.

Creating Variables

Now your new variable,
LoadedRed, is added to the
Variable List.

If you click on it, you can
see its InitialValue setting.

You can also Delete it, if
necessary.

Press OK to persist this
change to the Variable List.

Updating New Variables

Now we can try to
update LoadedRed,
whenever we pickup a
Red Object.

Choose one of your
Pickup Red statements
(there should be one for
Left and one for Right).

Click Advanced Action.

If you didn’t already have a debug
printf() statement like this here,
we recommend you add it while
editing this Advanced Action...

Updating New Variables

Add the appropriate line
of code to add 1 to
LoadedRed’s value.

There are two common
ways to do that, as
shown.

Click OK to save the
change.

LoadedRed = LoadedRed + 1;

Can also be written as:
LoadedRed++;

Can add printf() to print the value of LoadedRed.

Syntax Errors
If you forget to add a semicolon(;) or make some spelling mistake in the code,
you will get a Syntax Error popup, and you will not be able to advance - you
won’t be able to Save, Build, or change other statements in your program.

NOTE: I forgot to press OK after Adding New Variable in the Variable List window, so it
didn’t recognize this variable name.
I had to go back and add it properly, in order to proceed.

TEST TEST TEST

Before doing this for the
other Red statement, or
the rest of the Objects,
let’s TEST!

Make sure you can Build
successfully.

Then Load your new AI
and press Play.

https://docs.google.com/file/d/1SSRuZYntW4qa49WUDqqi0IMHFhBeS2WE/preview

The Bug
When you ask your Robot to do
something for 3 seconds, it
turns that into:

 3000 ms / 60 ms per cycle =
 50 cycles of 60ms each

For each cycle, it calls the
Advanced Action code again…

So we end up executing:
 LoadedRed = LoadedRed + 1;
50 times… Until Duration is 0!

Picking up Red Left. Duration = 49
Now LoadedRed = 1
Picking up Red Left. Duration = 48
Now LoadedRed = 2
Picking up Red Left. Duration = 47
Now LoadedRed = 3
…
…
Picking up Red Left. Duration = 3
Now LoadedRed = 47
Picking up Red Left. Duration = 2
Now LoadedRed = 48
Picking up Red Left. Duration = 1
Now LoadedRed = 49
Picking up Red Left. Duration = 0
Now LoadedRed = 50

(from 49 to 0; 50 total cycles)

The Fix

Whenever you add FindObject Action to a statement, inside the code internally
it is adding this logic:

if(Duration == 1) LoadedObjects++;

That means, between Duration 49 down to 0, it will only execute
LoadedObjects++ (or LoadedObjects = LoadedObjects + 1) only once!

When? Only when the Duration is 1, just before the full action is over…

So, let’s do the same for LoadedRed...

The Fix

Correct the appropriate
line of code to add one
more to LoadedRed only
when Duration == 1.

Coding Notes
= : means “set to”
== : means “is equal?”

Click OK to save

if (Duration == 1) LoadedRed = LoadedRed + 1;

Note: It’s 2 ‘=’ signs. As in ==

TEST TEST TEST

Before doing this for the
other Red statement, or
the rest of the Objects,
let’s TEST!

Now LoadedRed seems
to update correctly!

https://docs.google.com/file/d/1CMFskUEMRpWSTRE-FFxlt_2D_EfvvH6U/preview

Now Add a Condition

We should only pickup Red,
if LoadedRed < 2.

So, add that condition to
the Pickup statement.

Make sure Build succeeds.

TEST TEST TEST

Build and TEST:

● Pickup 2 Reds
● Make sure it won’t pick up another one

If you only coded Left side, make sure you only test from Left side…

Otherwise you will get false results:
Robot won’t check condition, and it won’t update LoadedRed either...

Duplicate Logic to Other Side

Duplicate the LoadedRed Advanced Condition &
Advanced Action for both sides Pickup
statements.

Then add LoadedCyan and LoadedBlack
variables, and add similar logic for those two color
Objects.

Test that the Robot will only pickup:

● 2 Red, 2 Cyan, and 2 Black Objects

Deposit Advanced Condition
In our example RRGGBB strategy, you should only Deposit if all 3 are True:

● LoadedRed == 2
● LoadedCyan == 2
● LoadedBlack == 2

You can add that aggregate condition to Deposit statement using this
Advanced Condition:
LoadedRed == 2 && LoadedCyan == 2 && LoadedBlack == 2

Deposit Advanced Condition

Since the only way you
could ever get this
condition is when you’re
also fully loaded, you can
also simplify this to:

LoadedObjects == 6

Deposit Advanced Action

Also we need to remember
to clear all of our variables
after Depositing.

Set all 3 variables back to 0.

LoadedBlack = LoadedCyan = LoadedRed = 0;

Deposit Advanced Action

Do we need
if (Duration == 1)?

Test without, and see...

if (Duration == 1)
 LoadedBlack = LoadedCyan = LoadedRed = 0;

Full Example

Build and test the
full algorithm.

You can fold the
“Follow Wall When
Fully Loaded”
strategy into this
algorithm as well.

https://docs.google.com/file/d/1pgx0F3cPKHZf0pncIrmEtHQWFEILEI8u/preview

