Facial Identification Using A Multilayer Perceptron

David Lavy MS ENG '16 Sean Matuszak CAS '16 Sean Smith CAS '17

Introduction

- Why Face Recognition?
 - Facebook
 - Surveillance
 - Crime fighting
- Why Neural Networks?
 - State-of-the-art pattern recognition
 - "Bionic Image Analysis" mimics biology

Goals

- 1. Implement and train a multilayer perceptron (MLP)
- 2. Train the MLP on pixel values
- 3. Improve results by using computer vision techniques to pre-process
- 4. Approach State-of-the-Art detection rates

Data Sets

- 1. ATT Dataset (right)
 - 10 pictures of each of 40 subjects
 - Cropped and Scaled
 - Greyscale
 - Uniformly lit
- 2. Caltech Frontal Face Dataset
 - Full-size color images
 - 10 pictures of 19 subjects
 - Preprocessesing

Caltech Frontal Face Data Set - preprocessing

Haarcascades for Facial Segmentation

- Edge, Line, Four-rectangle features detected
- Pre-trained system detects features that are face-like
- For each window create "stages" (groups of classifiers with smaller numbers of features in the earlier stages)
 - if a stage fails, reject the window as a face for efficiency
 - a window that passes all stages (i.e. all features are regarded as face-like), a face is identified
- Method proposed by Paul Viola and Micheal Jones in "Rapid Object Detection using a Boosted Cascade of Simple Features" (2001)
- Used OpenCV library call and a haarcascade xml (to get the trained coefficients)

Haarcascades

Example of Haarcascades filters

Haar features (.xml)

Haarcascades filters applied to image

image from openCV documentation

Histogram Equalization for Lighting Correction

Image from http://www.cs.utah.edu/~jfishbau/improc/project2/

HQ in our set of images

BEFORE HQ

HQ in our set of images

AFTER HQ

Eigenfaces: Calculation

Eigenfaces: Calculation

Eigenfaces: Calculation

Eigenfaces examples

- Faces turned into a vector of coefficients which represent a face's summation of several generated "eigenfaces"
- Commonly used method in facial recognition

A sample of actual eigenfaces generated and Sean Matuszak as an example. Note - coefficients are not the real results for Sean's face

Multilayer Perceptron

- Neural Network
- Implemented with the PyBrain Library
- Sigmoid Function

$$S(t) = \frac{1}{1 + e^{-t}}.$$

- Input: eigenvectors or pixel values
- Hidden layer: sigmoid curve
- Output layer: Binary array where the index corresponds to

Concrete Example

120.89521511, -110.33682746]

hidden layer has 150 nodes

Actual Outcome: [0.01199941, 0.0056677 0.00703534, 0.03423871 0.00178826, 0.01630305 0.00516428, 0.00117239 0.00124584, 0.00368228 0.01062241, 0.00692866 0.00647613, 0.05230364 0.00095177, 0.15660527 0.28097068, 0.00765588 0.3891883

MLP - Training: Backward Propagation of Errors

- Phase One Propagation
 - Runs input forward through the MLP, saving values at each neuron
 - Runs result backwards through MLP, saving values that "should have" been generated at each neuron based on the current weights
 - Calculates the difference at each neuron and saves it as "delta"

Input 1 Input 2 Input 3

Input layer

Hidden layer

Output layer

Input 4

Description adapted from https://en.wikipedia.org/wiki/Backpropagation

MLP - Training: Backward Propagation of Errors

- Phase Two Updates
 - At each "synapse" between a weight and a neuron, multiply each output delta by the input activation to get a gradient
 - Generate a correction based on the learning rate (a percentage of the gradient) to subtract from current weight values
 - high learning rate/high percentage will train faster, but be less accurate
 - low learning rate will require more training iterations, but will be more accurate

Hidden layer

Output layer

Input layer

Input 1

Input 2

Input 3

Input 4

3 Phases of Testing

- 1. Naive approach
- 2. ATT dataset
- 3. Caltech frontal dataset

Testing Phase One - Naive Approach

- Input: All Pixel Values
- Hidden Layer: 3 Neurons
- Output: One output neuron, outputting number corresponding to the individual tested (i.e. "subject 1 40")
- 200 rounds of training

Testing Phase One - Results

- Very low correct identification (true positive) rate
- MLP consistently returning ~20, why?
- Backpropagation Algorithm lowers deltas for each individual
 - Ideally, this would minimize by teaching the neural net which values give correct values to ID faces
 - Realistically with the number of input and hidden nodes, we were minimizing the sum of squares by setting the output to the average output between 1 and 40
- Conclusions
 - Too many input nodes
 - Too few hidden nodes
 - Too many classes (individuals to be identified)

Testing Phase Two - Eigenfaces

- Input Layer: eigenface values (input = 300, 75% of the number of images)
- Hidden Layer: 150 nodes (half of 300, based on our trial and error)
- Output Layer: 1 node outputs a vector of size 40 (number of classes)
 - \circ $\hfill max$ max index selected, corresponding to the subject's index
- Training Rounds: 500
- Results: 82.5% correct identification rate

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	8	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	11	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	12	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	13	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	14	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
d Value	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
size	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
othe	21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dYP	22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	27	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
	29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0
	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2		0	0	0	0	0	0	0	0	0
	31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	-	0	0	0	0	0	0	0	0	0
	32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	0	0	0	0	0	0	0
	34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	0	0	0	0	0	0
	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1	0	0	0	0	1
	36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
	38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0
	39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0
	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2

Testing Phase Two -Confusion Matrix

Testing Phase Three - Facial extraction, brightening, and eigenfaces

- Faces segmented using Haarcascades
- Faces were normalized using histogram equalization
- Faces were turned into eigenfaces
- 92.1% correct identification rate

Testing Phase Three - Confusion Matrix

Truth Values

Visual Results

Actual Data

0 100 200 300 400 500 600 700 800

Predicted Data

True Positive Rate with Different Splits

	50%	60%	70%	80%	90%
Training Set	5	6	7	8	9
Testing Set	5	4	3	2	1
True Positive					
Rate	70.53	78.95	82.46	92.11	94.74

Training set	Number of images per person								
Training set	Number of images per person								
1	2	3	4	5	6	7	8	9	
Testing set	9	8	7	6	5	4	3	2	1
Eigenfaces/MLP	32.5%	39.0%	48.0%	54.5%	59.5%	66.0%	73.0%	82.0%	86.0%

Published work: Using MLP and RBF Neural Networks for Face Recognition: an Insightful Comparative Case Study" published by Hala M. Ebeid in 2011

Interesting Result - Robust to Lighting Conditions

- Testing Histogram Equalization against unadjusted input did not result in a significant difference
- Eigenfaces have a method where they subtract the "average face", making the eigenfaces robust to lighting conditions

State-of-the-Art

• Current MLP SOTA:

- "Using MLP and RBF Neural Networks for Face Recognition: an Insightful Comparative Case Study" published by Hala M. Ebeid in 2011 used an MLP and eigenfaces to detect individuals from a set of 40, and achieved a correct identification rate of 82.0% for a 80/20% training/testing split
- Other Facial detection methods:
 - The RBF (radial basis function neural network) results were 83.0%, slightly better than MLP
 - Facebook, an industry leader in facial identification, uses euclidean distance between facial features to identify faces. Facebook correct identification data was not found.
- Our results exceed current SOTA!
 - For our 40-person test, our correct identification rate were 82.5%, marginally higher than current MLP data!
 - For our 19-person test, our correct identification rate 92.1%, impressive considering this was segmented out of a whole image

Limitations

- Inherent limitation of training: cannot detect faces which are untrained
- Input size should be scaled to a manageable size
- Larger numbers of classes give worse results
- Training/testing is time-consuming
- hidden nodes must be configured manually
- Detections are binary, not a level of certainty

Conclusions

- Haarcascades is a fast and reliable method to detect faces
- Multilayer perceptrons are effective in classifying faces, but with ~20% error there is lots of progress to be made
- Eigenfaces are valuable in reducing the size of the input and in finding key facial features, and are robust to lighting conditions
- PyBrain is useful but not well-documented
 - Machine learning libraries are not well-documented in general:
 - Fann is written in C++ has python wrappers (worse documented)
 - Tensor Flow (mostly for convolutional NN)
- Ideas for future study
 - Euclidean Distance face recognition "golden standard" used by Facebook
 - Convolutional Neural Network more complicated neural network structure

Extra - Integer Dataset

- Proof of Concept
- Input: 64 pixels
- Hidden: 8 nodes (squareroot usage for hidden nodes is standard)
- Output: The integer that the picture corresponds to
- 200 rounds of training

Extra - Results

• Reliable Results

- Only 2% error in test cases
- TODO get confusion matrix and correct identification rate
- Certain patterns were unique, such as zero which had a 100% detection rate
- Some numbers were easily confusable such as 8s and 1s

Conclusions

- Small number of inputs yields good results
- Small classification size yields good results
- Square root as the number of hidden nodes yields good results (based on research)
- Similar patterns were confused more than others, predicting that some faces will be more distinct than others