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Introduction

e Why Face Recognition?
o Facebook
o  Surveillance
o  Crime fighting

e Why Neural Networks?

o State-of-the-art pattern recognition
o “Bionic Image Analysis” - mimics biology




Goals

Implement and train a multilayer perceptron (MLP)

Train the MLP on pixel values
Improve results by using computer vision techniques to pre-process

Approach State-of-the-Art detection rates
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Data Sets

1. ATT Dataset (right)

10 pictures of each of 40 subjects
Cropped and Scaled

Greyscale

o  Uniformly lit

2. Caltech Frontal Face Dataset

o  Full-size color images
o 10 pictures of 19 subjects
o Preprocessesing
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Caltech Frontal Face Data Set

preprocessing

Histogram
Equalization




Haarcascades for Facial Segmentation

e Edge, Line, Four-rectangle features detected
e Pre-trained system detects features that are face-like
e For each window create “stages” (groups of classifiers with smaller numbers

of features in the earlier stages)
o if a stage fails, reject the window as a face for efficiency
o awindow that passes all stages (i.e. all features are regarded as face-like), a face is identified

e Method proposed by Paul Viola and Micheal Jones in “Rapid Object Detection
using a Boosted Cascade of Simple Features” (2001)

e Used OpenCV library call and a haarcascade xml (to get the traj

coefficients)




Haarcascades

Example of Haarcascades filters

image from openCV documentation
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Haarcascades filters applied to
image

— Haar features (.xml)




Histogram Equalization for Lighting Correction

Criginal Image
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HQ in our set of images
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HQ in our set of images
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Eigenfaces: Calculation

Calculate average
face

Represent face as a
vector



Eigenfaces: Calculation

Correlation matrix

b : b T (N22N?) matrix

A= [(I)l (I)2 o (I);u] (N%xM) matrix

Substrace the
average face
(normalized)



Eigenfaces: Calculation

Keep the best
___, Calculate eigenvectors ____  eigenvectorsthat = Normalizethe K ____

and eigenvalues correspond to the largest eigenvectors
largest eigenvalues
Uy Yy (K values)
K

A

— &; — mean = iju]- , Wy = U?q}z‘
j=1



Eigenfaces examples

e Faces turned into a vector of coefficients which represent a face’s summation
of several generated “eigenfaces”
e Commonly used method in facial recognition

8 Eigenfaces samples

A sample of actual eigenfaces generated and Sean Matuszak as an example.
Note - coefficients are not the real results for Sean’s face



Multilayer Perceptron

Input layer Hidden layer Output layer
e Neural Network
e Implemented with the PyBrain

Inpur |

Library
e Sigmoid Function Input 2
1
S(t) — 1_|_ e_t' Input 3

e Input: eigenvectors or pixel values
e Hidden layer: sigmoid curve

e Output layer: Binary array where the
index corresponds to

[nput 4




Concrete Example

[-1109.92254531, Input layer Hidden layer Output layer
3822.22955533,
-115.90735887,
-1806.63734274,
-877.09674426,
-1835.81884568,
263.87997572,
403.22660642,
447.07778044,
-110.09288836,
-278.75246454,
221.73020268,

Input |

[nput 4

' 120.89521511,

-110.33682746] hidden layer has 150
nodes

Labeled Outcome:
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,,0,1,0]

Actual Outcome:

[ 0.01199941, 0.0056677

0.00703534, 0.03423871

0.00178826, 0.01630305

0.00516428, 0.00117239
0.00124584, 0.00368228

0.01062241, 0.00692866

0.00647613, 0.05230364
0.00095177, 0.15660527

0.28097068, 0.00765588

0.3891883




MLP - Training: Backward Propagation of Errors

Input layer Hidden layer Output layer

e Phase One - Propagation

o  Runs input forward through the MLP, saving values
at each neuron

o Runs result backwards through MLP, saving values
that “should have” been generated at each neuron Input 2
based on the current weights

o Calculates the difference at each neuron and saves  Input3
it as “delta”

Inpur |

[nput 4

Description adapted from https://en.wikipedia.org/wiki/Backpropagation



MLP - Training: Backward Propagation of Errors

Input layer Hidden layer Output layer
e Phase Two - Updates

o At each “synapse” between a weight and a neuron,
multiply each output delta by the input activation to
get a gradient

o Generate a correction based on the learning rate (a  nput2
percentage of the gradient) to subtract from

Inpur |

current weight values Input 3
m high learning rate/high percentage will train
faster, but be less accurate Input 4

m low learning rate will require more training
iterations, but will be more accurate

Description adapted from https://en.wikipedia.org/wiki/Backpropagation



3 Phases of Testing

1. Naive approach
2. ATT dataset
3. Caltech frontal dataset




Testing Phase One - Naive Approach

e Input: All Pixel Values

e Hidden Layer: 3 Neurons

e Output: One output neuron, outputting number corresponding to the individual
tested (i.e. “subject 1 - 40")

e 200 rounds of training




Testing Phase One - Results

e Very low correct identification (true positive) rate
e MLP consistently returning ~20, why?

o Backpropagation Algorithm lowers deltas for each individual

o Ideally, this would minimize by teaching the neural net which values give correct values to ID
faces

o Realistically with the number of input and hidden nodes, we were minimizing the sum of
squares by setting the output to the average output between 1 and 40
e Conclusions
o Too many input nodes
o Too few hidden nodes
o Too many classes (individuals to be identified)




Testing Phase Two - Eigenfaces

e Input Layer: eigenface values (input = 300, 75% of the number of images)
e Hidden Layer: 150 nodes (half of 300, based on our trial and error)

e Output Layer: 1 node outputs a vector of size 40 (number of classes)
o max index selected, corresponding to the subject’s index

e Training Rounds: 500
e Results: 82.5% correct identification rate




Truth Value
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Testing Phase Two -
Confusion Matrix
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Testing Phase Three - Facial extraction,
brightening, and eigenfaces

e Faces segmented using Haarcascades

e Faces were normalized using histogram equalization
e Faces were turned into eigenfaces

e 92.1% correct identification rate




Testing Phase Three - Confusion Matrix
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Visual Results

0 . 0
100 100
200 ks 200
300 &5 <) (5 300
400 ' 400
500 500

. <
0 100 200 300 400 500 600 700 800
i — . . 0

100 = 100
200 i ; i 200

300 . B “.. g 300

400 L - 400
500 RS . ol R 500

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Actual Data Predicted Data




True Positive Rate with Different Splits

50% 60% 70% 80% 90%
Training Set 5 6 7 8 9
Testing Set 5 4 3 2 1
True Positive
Rate 70.53 78.95 82.46 92.11 94.74
Tralning sek Number of images per
person
Training set |Number of images per
person
1 2 3 4 5 6 @ 8 9
Testing set |9 8 7 6 5 4 3 2 1
Eigenfaces/MLP|32.5% 39.0%(48.0%|54.5%|59.5%|66.0%|73.0%|(82.0%|86.0%

Published work: Using MLP and RBF Neural Networks for Face Recognition: an
Insightful Comparative Case Study” published by Hala M. Ebeid in 2011



Interesting Result - Robust to Lighting Conditions

e Testing Histogram Equalization against unadjusted input did not result in a
significant difference

e Eigenfaces have a method where they subtract the “average face”, making the
eigenfaces robust to lighting conditions




State-of-the-Art

e Current MLP SOTA:
o “Using MLP and RBF Neural Networks for Face Recognition: an Insightful Comparative Case
Study” published by Hala M. Ebeid in 2011 used an MLP and eigenfaces to detect individuals
from a set of 40, and achieved a correct identification rate of 82.0% for a 80/20%
training/testing split
e Other Facial detection methods:
o  The RBF (radial basis function neural network) results were 83.0%, slightly better than MLP
o Facebook, an industry leader in facial identification, uses euclidean distance between facial
features to identify faces. Facebook correct identification data was not found.

e OQurresults exceed current SOTA!

o  For our 40-person test, our correct identification rate were 82.5%, margin
current MLP data!

o For our 19-person test, our correct identification rate 92.1%, impre

segmented out of a whole image




Limitations

Inherent limitation of training: cannot detect faces which are untrained
Input size should be scaled to a manageable size

Larger numbers of classes give worse results

Training/testing is time-consuming

hidden nodes must be configured manually

Detections are binary, not a level of certainty




Conclusions

e Haarcascades is a fast and reliable method to detect faces

e Multilayer perceptrons are effective in classifying faces, but with ~20% error
there is lots of progress to be made

e Eigenfaces are valuable in reducing the size of the input and in finding key
facial features, and are robust to lighting conditions

e PyBrain is useful but not well-documented
o Machine learning libraries are not well-documented in general:
m Fannis written in C++ has python wrappers (worse documented)
m Tensor Flow (mostly for convolutional NN)

e Ideas for future study
o Euclidean Distance - face recognition “golden standard” used by Fac
o  Convolutional Neural Network - more complicated neural networ




Extra - Integer Dataset

e Proof of Concept Tt Tt g’ i’

e Input: 64 pixels vn 'I '!. 1

e Hidden: 8 nodes (squareroot usage for
hidden nodes is standard)

e Output: The integer that the picture

corresponds to
e 200 rounds of training

Prediction: 8 Prediction: 8 Prediction: 4 Prediction: 9

9

3




Extra - Results

e Reliable Results
o  Only 2% error in test cases
TODO - get confusion matrix and correct identification rate
Certain patterns were unique, such as zero which had a 100% detection rate
o Some numbers were easily confusable such as 8s and 1s

e Conclusions
o  Small number of inputs yields good results
o Small classification size yields good results
o  Square root as the number of hidden nodes yields good results (based on research)
o  Similar patterns were confused more than others, predicting that some faces will be more

(@)

O

distinct than others




