
Facial Identification Using A
Multilayer Perceptron
David Lavy MS ENG ‘16
Sean Matuszak CAS ‘16
Sean Smith CAS ‘17

Introduction

● Why Face Recognition?
○ Facebook
○ Surveillance
○ Crime fighting

● Why Neural Networks?
○ State-of-the-art pattern recognition
○ “Bionic Image Analysis” - mimics biology

Goals

1. Implement and train a multilayer perceptron (MLP)
2. Train the MLP on pixel values
3. Improve results by using computer vision techniques to pre-process
4. Approach State-of-the-Art detection rates

Data Sets

1. ATT Dataset (right)
○ 10 pictures of each of 40 subjects
○ Cropped and Scaled
○ Greyscale
○ Uniformly lit

2. Caltech Frontal Face Dataset
○ Full-size color images
○ 10 pictures of 19 subjects
○ Preprocessesing

Caltech Frontal Face Data Set - preprocessing

Haarcascade
Histogram
Equalization

● Edge, Line, Four-rectangle features detected
● Pre-trained system detects features that are face-like
● For each window create “stages” (groups of classifiers with smaller numbers

of features in the earlier stages)
○ if a stage fails, reject the window as a face for efficiency
○ a window that passes all stages (i.e. all features are regarded as face-like), a face is identified

● Method proposed by Paul Viola and Micheal Jones in “Rapid Object Detection
using a Boosted Cascade of Simple Features” (2001)

● Used OpenCV library call and a haarcascade xml (to get the trained
coefficients)

Haarcascades for Facial Segmentation

Haarcascades

image from openCV documentation

Example of Haarcascades filters

Haarcascades filters applied to
image

Haar features (.xml)

Histogram Equalization for Lighting Correction

Image from http://www.cs.utah.edu/~jfishbau/improc/project2/

HQ in our set of images

BEFORE HQ

HQ in our set of images

AFTER HQ

Eigenfaces: Calculation

Represent face as a
vector

Calculate average
face

Eigenfaces: Calculation

Substrace the
average face
(normalized)

Correlation matrix

Eigenfaces: Calculation

Keep the best
eigenvectors that
correspond to the

largest eigenvalues
(K values)

Calculate eigenvectors
and eigenvalues

Normalize the K
largest eigenvectors

Eigenfaces examples

A sample of actual eigenfaces generated and Sean Matuszak as an example.
Note - coefficients are not the real results for Sean’s face

= 0.12 + 0.4 - 0.11 - 0.11

● Faces turned into a vector of coefficients which represent a face’s summation
of several generated “eigenfaces”

● Commonly used method in facial recognition

Multilayer Perceptron

● Neural Network
● Implemented with the PyBrain

Library
● Sigmoid Function

● Input: eigenvectors or pixel values
● Hidden layer: sigmoid curve
● Output layer: Binary array where the

index corresponds to

Concrete Example
[-1109.92254531,
3822.22955533,
-115.90735887,
-1806.63734274,
-877.09674426,
 -1835.81884568,
263.87997572,
403.22660642,
447.07778044,
 -110.09288836,
-278.75246454,
221.73020268,
...
 120.89521511,
-110.33682746]

Labeled Outcome:
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, ,0, 1, 0]

Actual Outcome:
[0.01199941, 0.0056677
0.00703534, 0.03423871
0.00178826, 0.01630305
 0.00516428, 0.00117239
0.00124584, 0.00368228
0.01062241, 0.00692866
 0.00647613, 0.05230364
0.00095177, 0.15660527
0.28097068, 0.00765588
 0.3891883]

hidden layer has 150
nodes

MLP - Training: Backward Propagation of Errors

● Phase One - Propagation
○ Runs input forward through the MLP, saving values

at each neuron
○ Runs result backwards through MLP, saving values

that “should have” been generated at each neuron
based on the current weights

○ Calculates the difference at each neuron and saves
it as “delta”

Description adapted from https://en.wikipedia.org/wiki/Backpropagation

MLP - Training: Backward Propagation of Errors

● Phase Two - Updates
○ At each “synapse” between a weight and a neuron,

multiply each output delta by the input activation to
get a gradient

○ Generate a correction based on the learning rate (a
percentage of the gradient) to subtract from
current weight values

■ high learning rate/high percentage will train
faster, but be less accurate

■ low learning rate will require more training
iterations, but will be more accurate

Description adapted from https://en.wikipedia.org/wiki/Backpropagation

3 Phases of Testing

1. Naive approach
2. ATT dataset
3. Caltech frontal dataset

Testing Phase One - Naive Approach

● Input: All Pixel Values
● Hidden Layer: 3 Neurons
● Output: One output neuron, outputting number corresponding to the individual

tested (i.e. “subject 1 - 40”)
● 200 rounds of training

Testing Phase One - Results

● Very low correct identification (true positive) rate
● MLP consistently returning ~20, why?
● Backpropagation Algorithm lowers deltas for each individual

○ Ideally, this would minimize by teaching the neural net which values give correct values to ID
faces

○ Realistically with the number of input and hidden nodes, we were minimizing the sum of
squares by setting the output to the average output between 1 and 40

● Conclusions
○ Too many input nodes
○ Too few hidden nodes
○ Too many classes (individuals to be identified)

Testing Phase Two - Eigenfaces

● Input Layer: eigenface values (input = 300, 75% of the number of images)
● Hidden Layer: 150 nodes (half of 300, based on our trial and error)
● Output Layer: 1 node outputs a vector of size 40 (number of classes)

○ max index selected, corresponding to the subject’s index

● Training Rounds: 500
● Results: 82.5% correct identification rate

Testing Phase Two -
Confusion Matrix

Testing Phase Three - Facial extraction,
brightening, and eigenfaces
● Faces segmented using Haarcascades
● Faces were normalized using histogram equalization
● Faces were turned into eigenfaces
● 92.1% correct identification rate

Testing Phase Three - Confusion Matrix

Visual Results

Actual Data Predicted Data

True Positive Rate with Different Splits

Published work: Using MLP and RBF Neural Networks for Face Recognition: an
Insightful Comparative Case Study” published by Hala M. Ebeid in 2011

Interesting Result - Robust to Lighting Conditions

● Testing Histogram Equalization against unadjusted input did not result in a
significant difference

● Eigenfaces have a method where they subtract the “average face”, making the
eigenfaces robust to lighting conditions

State-of-the-Art
● Current MLP SOTA:

○ “Using MLP and RBF Neural Networks for Face Recognition: an Insightful Comparative Case
Study” published by Hala M. Ebeid in 2011 used an MLP and eigenfaces to detect individuals
from a set of 40, and achieved a correct identification rate of 82.0% for a 80/20%
training/testing split

● Other Facial detection methods:
○ The RBF (radial basis function neural network) results were 83.0%, slightly better than MLP
○ Facebook, an industry leader in facial identification, uses euclidean distance between facial

features to identify faces. Facebook correct identification data was not found.

● Our results exceed current SOTA!
○ For our 40-person test, our correct identification rate were 82.5%, marginally higher than

current MLP data!
○ For our 19-person test, our correct identification rate 92.1%, impressive considering this was

segmented out of a whole image

Limitations

● Inherent limitation of training: cannot detect faces which are untrained
● Input size should be scaled to a manageable size
● Larger numbers of classes give worse results
● Training/testing is time-consuming
● hidden nodes must be configured manually
● Detections are binary, not a level of certainty

Conclusions

● Haarcascades is a fast and reliable method to detect faces
● Multilayer perceptrons are effective in classifying faces, but with ~20% error

there is lots of progress to be made
● Eigenfaces are valuable in reducing the size of the input and in finding key

facial features, and are robust to lighting conditions
● PyBrain is useful but not well-documented

○ Machine learning libraries are not well-documented in general:
■ Fann is written in C++ has python wrappers (worse documented)
■ Tensor Flow (mostly for convolutional NN)

● Ideas for future study
○ Euclidean Distance - face recognition “golden standard” used by Facebook
○ Convolutional Neural Network - more complicated neural network structure

Extra - Integer Dataset

● Proof of Concept
● Input: 64 pixels
● Hidden: 8 nodes (squareroot usage for

hidden nodes is standard)
● Output: The integer that the picture

corresponds to
● 200 rounds of training

Extra - Results

● Reliable Results
○ Only 2% error in test cases
○ TODO - get confusion matrix and correct identification rate
○ Certain patterns were unique, such as zero which had a 100% detection rate
○ Some numbers were easily confusable such as 8s and 1s

● Conclusions
○ Small number of inputs yields good results
○ Small classification size yields good results
○ Square root as the number of hidden nodes yields good results (based on research)
○ Similar patterns were confused more than others, predicting that some faces will be more

distinct than others

