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Introduction

● Why Face Recognition?
○ Facebook
○ Surveillance
○ Crime fighting

● Why Neural Networks?
○ State-of-the-art pattern recognition
○ “Bionic Image Analysis” - mimics biology



Goals

1. Implement and train a multilayer perceptron (MLP)
2. Train the MLP on pixel values
3. Improve results by using computer vision techniques to pre-process
4. Approach State-of-the-Art detection rates



Data Sets

1. ATT Dataset (right)
○ 10 pictures of each of 40 subjects
○ Cropped and Scaled
○ Greyscale
○ Uniformly lit

2. Caltech Frontal Face Dataset
○ Full-size color images
○ 10 pictures of 19 subjects
○ Preprocessesing



Caltech Frontal Face Data Set - preprocessing

Haarcascade
Histogram 
Equalization



● Edge, Line, Four-rectangle features detected
● Pre-trained system detects features that are face-like
● For each window create “stages” (groups of classifiers with smaller numbers 

of features in the earlier stages)
○ if a stage fails, reject the window as a face for efficiency
○ a window that passes all stages (i.e. all features are regarded as face-like), a face is identified

● Method proposed by Paul Viola and Micheal Jones in “Rapid Object Detection 
using a Boosted Cascade of Simple Features” (2001)

● Used OpenCV library call and a haarcascade xml (to get the trained 
coefficients)

Haarcascades for Facial Segmentation



Haarcascades

image from openCV documentation

Example of Haarcascades filters

Haarcascades filters applied to 
image

Haar features (.xml)



Histogram Equalization for Lighting Correction

Image from http://www.cs.utah.edu/~jfishbau/improc/project2/



HQ in our set of images

BEFORE HQ



HQ in our set of images

AFTER HQ



Eigenfaces: Calculation

Represent face as a 
vector

Calculate average 
face



Eigenfaces: Calculation

Substrace the 
average face 
(normalized)

Correlation matrix



Eigenfaces: Calculation

Keep the best 
eigenvectors that 
correspond to the 

largest eigenvalues 
(K values)

Calculate eigenvectors 
and eigenvalues

Normalize the K 
largest eigenvectors



Eigenfaces examples

A sample of actual eigenfaces generated and Sean Matuszak as an example. 
Note - coefficients are not the real results for Sean’s face

=   0.12 +  0.4     -  0.11     -  0.11

● Faces turned into a vector of coefficients which represent a face’s summation 
of several generated “eigenfaces”

● Commonly used method in facial recognition



Multilayer Perceptron

● Neural Network
● Implemented with the PyBrain 

Library
● Sigmoid Function

● Input: eigenvectors or pixel values
● Hidden layer: sigmoid curve
● Output layer: Binary array where the 

index corresponds to 



Concrete Example
[-1109.92254531,  
3822.22955533,  
-115.90735887, 
-1806.63734274,  
-877.09674426,
 -1835.81884568,   
263.87997572,   
403.22660642,   
447.07778044, 
   -110.09288836,  
-278.75246454,   
221.73020268,
...
   120.89521511,  
-110.33682746]

Labeled Outcome:
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, ,0, 1, 0]

Actual Outcome:
[ 0.01199941,  0.0056677   
0.00703534,  0.03423871  
0.00178826,  0.01630305
  0.00516428,  0.00117239  
0.00124584,  0.00368228  
0.01062241,  0.00692866
  0.00647613,  0.05230364  
0.00095177,  0.15660527  
0.28097068,  0.00765588
  0.3891883 ]

hidden layer has 150 
nodes



MLP - Training: Backward Propagation of Errors

● Phase One - Propagation
○ Runs input forward through the MLP, saving values 

at each neuron
○ Runs result backwards through MLP, saving values 

that “should have” been generated at each neuron 
based on the current weights

○ Calculates the difference at each neuron and saves 
it as “delta”

Description adapted from https://en.wikipedia.org/wiki/Backpropagation 



MLP - Training: Backward Propagation of Errors

● Phase Two -  Updates
○ At each “synapse” between a weight and a neuron, 

multiply each output delta by the input activation to 
get a gradient

○ Generate a correction based on the learning rate (a 
percentage of the gradient) to subtract from 
current weight values

■ high learning rate/high percentage will train 
faster, but be less accurate

■ low learning rate will require more training 
iterations, but will be more accurate

Description adapted from https://en.wikipedia.org/wiki/Backpropagation 



3 Phases of Testing

1. Naive approach
2. ATT dataset
3. Caltech frontal dataset



Testing Phase One - Naive Approach

● Input: All Pixel Values
● Hidden Layer: 3 Neurons
● Output: One output neuron, outputting number corresponding to the individual 

tested (i.e. “subject 1 - 40”)
● 200 rounds of training



Testing Phase One - Results

● Very low correct identification (true positive) rate
● MLP consistently returning ~20, why?
● Backpropagation Algorithm lowers deltas for each individual

○ Ideally, this would minimize by teaching the neural net which values give correct values to ID 
faces

○ Realistically with the number of input and hidden nodes, we were minimizing the sum of 
squares by setting the output to the average output between 1 and 40

● Conclusions
○ Too many input nodes
○ Too few hidden nodes
○ Too many classes (individuals to be identified)



Testing Phase Two - Eigenfaces

● Input Layer: eigenface values (input = 300, 75% of the number of images)
● Hidden Layer: 150 nodes (half of 300, based on our trial and error)
● Output Layer: 1 node outputs a vector of size 40 (number of classes)

○ max index selected, corresponding to the subject’s index

● Training Rounds: 500
● Results: 82.5% correct identification rate



Testing Phase Two - 
Confusion Matrix



Testing Phase Three - Facial extraction, 
brightening, and eigenfaces
● Faces segmented using Haarcascades
● Faces were normalized using histogram equalization
● Faces were turned into eigenfaces
● 92.1% correct identification rate



Testing Phase Three - Confusion Matrix



Visual Results

Actual Data Predicted Data



True Positive Rate with Different Splits

Published work: Using MLP and RBF Neural Networks for Face Recognition: an 
Insightful Comparative Case Study” published by Hala M. Ebeid in 2011 



Interesting Result - Robust to Lighting Conditions

● Testing Histogram Equalization against unadjusted input did not result in a 
significant difference

● Eigenfaces have a method where they subtract the “average face”, making the 
eigenfaces robust to lighting conditions



State-of-the-Art
● Current MLP SOTA:

○ “Using MLP and RBF Neural Networks for Face Recognition: an Insightful Comparative Case 
Study” published by Hala M. Ebeid in 2011 used an MLP and eigenfaces to detect individuals 
from a set of 40, and achieved a correct identification rate of  82.0% for a 80/20% 
training/testing split

● Other Facial detection methods:
○ The RBF (radial basis function neural network) results were 83.0%, slightly better than MLP
○ Facebook, an industry leader in facial identification, uses euclidean distance between facial 

features to identify faces. Facebook correct identification data was not found.

● Our results exceed current SOTA!
○ For our 40-person test, our correct identification rate were 82.5%, marginally higher than 

current MLP data!
○ For our 19-person test, our correct identification rate 92.1%, impressive considering this was 

segmented out of a whole image



Limitations

● Inherent limitation of training: cannot detect faces which are untrained
● Input size should be scaled to a manageable size
● Larger numbers of classes give worse results
● Training/testing is time-consuming
● hidden nodes must be configured manually
● Detections are binary, not a level of certainty



Conclusions

● Haarcascades is a fast and reliable method to detect faces
● Multilayer perceptrons are effective in classifying faces, but with ~20% error 

there is lots of progress to be made
● Eigenfaces are valuable in reducing the size of the input and in finding key 

facial features, and are robust to lighting conditions
● PyBrain is useful but not well-documented

○ Machine learning libraries are not well-documented in general:
■ Fann is written in C++ has python wrappers (worse documented)
■ Tensor Flow (mostly for convolutional NN)

● Ideas for future study
○ Euclidean Distance - face recognition “golden standard” used by Facebook
○ Convolutional Neural Network - more complicated neural network structure



Extra - Integer Dataset

● Proof of Concept
● Input: 64 pixels
● Hidden: 8 nodes (squareroot usage for 

hidden nodes is standard)
● Output: The integer that the picture 

corresponds to
● 200 rounds of training



Extra - Results

● Reliable Results
○ Only 2% error in test cases
○ TODO - get confusion matrix and correct identification rate
○ Certain patterns were unique, such as zero which had a 100% detection rate
○ Some numbers were easily confusable such as 8s and 1s

● Conclusions
○ Small number of inputs yields good results
○ Small classification size yields good results
○ Square root as the number of hidden nodes yields good results (based on research)
○ Similar patterns were confused more than others, predicting that some faces will be more 

distinct than others


