

MINERvA Masterclass Start-up

What is a Masterclass?

High school students are "Particle Physicists for a Day"

- Intro talk(s) on physics and experiment
- Tour of physics lab
- Ramp up and then...
- Analyze authentic (MINERvA) data
- Finish with (Fermilab) videoconference

Key element:

Student/teacher interaction with physicists

MINOS and MINERvA

Neutrino Beam Line for MINERvA and MINOS Experiments

MINERVA

Muon neutrinos hit the carbon target. MINERvA measures the products of the interaction.

The Interaction

A muon neutrino interacts with a carbon nucleus. A muon and a proton are ejected from the nucleus carrying the neutrino momentum.

Measurement

This is what MINERvA "sees". The neutrino comes from the left, undetected. It hits a carbon nucleus and interacts with a neutron. The interaction transforms the neutrino into a muon and the neutron into a proton. MINERvA can measure the momentum of each.

Signal vs. Background

Background events:

- Do not fit signal paradigm of one short proton track, one long muon track, or
- Confound the ability of MINERvA to measure momentum accurately.

QuarkNet Measure signal in Arachne

Link to this event Go to the muon decay library

Transfer to spreadsheet

	merged Tuple			(enter a 1)	Zoo (enter a 1)	Muon KE (MeV)	v/c	px (MeV/c)	py (MeV/c)		Proton KE (MeV)	v/c	px (MeV/c)		pz (MeV/c)	Net
		Entry												py (MeV/c)		px (N
54	7	8	38			2,468.00	0.99917	127.87	-451.51	2,527.66	250.63	0.61	282.26	73.04	669.3	2
55	7	8	39			4,180.98	0.9997	-290.25	322.75	4,262.65	4,180.98	1 1	-290.25	322.75	4,262.6	5
56	7	8	40			2,783.10	0.99934	-181.33	-468.2	2,842.18	299.54	0.65	40.96	609.33	527.9	2
57	7	8	41													
38	7	8	42			3,467.68	0.99957	311.9	-624.25	3,502.30	1,219.51	0.9	169.69	-339.63	1,905.4	8
59	7	8	43			6,862.50	0.99989	579.99	-95.45	6,941.86	330.54	0.67	-61.04	308.27	7 794.	1
60	7	8	44			70.27	0.80069	56.54	-31.5	124.52	158.34	0.52	228.67	-127.41	503.5	8
61	7	8	45			4,687.34	0.99976	-602.76	-335.44	4,741.27	158.34	0.52	228.67	-127.41	503.5	8
62	7	8	46			2,879.91	0.99938	-369.07	-127.86	2,957.39	1,286.94	0.91	-249.61	-86.47	2,000.1	8
63	7	8	47			3,890.06	0.99965	-295.93	433.85	3,959.00	1,397.32	0.92	-158.47	232.33	2,120.0	9
64	7	8	48			5,784.31	0.99984	370.25	-586.18	5,847.42	169.58	0.53	-246.29	271.65	460.	9
65	7	8	49			3,074.27	0.99945	-228.59	-303.83	3,154.71	1,432.36	0.92	-156.6	-208.15	2,161.2	3
65	7	8	50			5,756.19	0.99984	326.56	-411.38	5,836.67	5,784.31	1	370.25	-586.18	5,847.4	2
67																
68																
69																
70																
71	7	9	0													
72	7	9	1			125.64	0.89036	111.97	-12.75	171.66	260.46	0.62	406.75	-46.31	623.5	9
73	7		2													
74	7	9	3			2,745.79	0.99932	-396.07	-157.98	2,816.76	1,493.81	0.92	-311.93	-124.42	2,218.3	5
75.	7	9	4			235.04	0.60049	337.93	-438.13	435.93	235.04	0.6	337.93	-438.13	435.9	3
76	7	9	5			3,844.64	0.999646564	457.9591639	344.430018	3,906.44						
77	7	9	6								Ď -					
78	7	9	7													
79	7	9	8													
80	7	9	9													
81	7	9	10													
82	7	9	11													
83	7	9	12													
RA	7	0	13													

Build plots

We can find:

- Neutrino beam energy (almost)
- Uncertainty in proton momentum
- Uncertainty in proton position → nuclear radius

Model dependent!

