CircuitVQA: A VQA Dataset for Electrical Circuit Images
Rahul Mehta1, Bhavyajeet Singh1,2
Vasudeva Varma1, Manish Gupta1,2
1IIIT, 2Microsoft
manishg.iitb@gmail.com
1
07-Jun-24
What is VQA for electrical circuit images, and why do this?
manishg.iitb@gmail.com
2
07-Jun-24
Related Work
manishg.iitb@gmail.com
3
07-Jun-24
CircuitVQA Dataset Curation
manishg.iitb@gmail.com
4
07-Jun-24
Generation of Question Templates
manishg.iitb@gmail.com
5
07-Jun-24
Generation of Question Answer Pairs
manishg.iitb@gmail.com
6
07-Jun-24
Generation of Question Answer Pairs
manishg.iitb@gmail.com
7
07-Jun-24
Generation of Question Answer Pairs
manishg.iitb@gmail.com
8
07-Jun-24
CircuitVQA Dataset Analysis
manishg.iitb@gmail.com
9
07-Jun-24
Frequency distribution of value-based questions across component names.
Frequency distribution of count-based questions
Methods for CircuitVQA
manishg.iitb@gmail.com
10
07-Jun-24
Input Representations
manishg.iitb@gmail.com
11
07-Jun-24
Input Representations
manishg.iitb@gmail.com
12
07-Jun-24
Input Prompt Templates for Instruction-based Models
manishg.iitb@gmail.com
13
07-Jun-24
Results
manishg.iitb@gmail.com
14
07-Jun-24
Results per question type for the Desc variants of the models on CircuitVQA test set.
Hallucination scores. A=count, B=indomain, C=out-domain.
Examples of Predictions from our best model
manishg.iitb@gmail.com
15
07-Jun-24
Examples of error cases from our best model
manishg.iitb@gmail.com
16
07-Jun-24
Summary
manishg.iitb@gmail.com
17
07-Jun-24