
Unity 2D Toolkit

2D Toolkit

● $65 on the Asset Store
● Current version is 2.00/2.10
● This is based on 1.92 (breaking changes

with 2.0)
● http://unikronsoftware.com/2dtoolkit/

http://unikronsoftware.com/2dtoolkit/

Cameras

● Standard Unity Camera in Isometric mode
○ Pros: Familiar, scrolls easily
○ Cons: Scales, rather than uses pixel-perfect display

● tk2dCamera
○ Pros: Uses pixel units
○ Cons: Doesn't behave like a standard Camera

■ Bottom-left is always origin
■ Must adjust items within scene to scroll

Sprite Collection

● Asset
● Builds sprite sheets out of individual images
● Optimizes based on Camera/Player settings
● Advantage over Orthello/Futile/etc.: you

don't need an external program for this
● Allows you to edit bounding boxes (polygon

mode)

Sprite Animations

● Asset
● Requires Sprite Collection
● A link between "Sprite Collection" and

"Animated Sprite"

Sprite

● Requires Sprite Collection
● Is a Unity object that can take other

components

Animated Sprite

● Requires Sprite Animation
● Uses Sprite Animation vs. Sprite Collection
● Play("animationName")
● IsPlaying("animationName")
● Stop()

Static Sprite Batcher

● Used to bake down multiple sprite objects
into a single batch for performance

Text Mesh

● Requires a BMFont definition and image
○ BMFont:

http://www.angelcode.com/products/bmfont/
○ Glyph Designer (Mac)
○ You can also draw your own manually (but hard to

troubleshoot)
● Can update dynamically (call Commit()

afterwards)

http://www.angelcode.com/products/bmfont/

Patterns I Use
Warning: may contain anti-patterns

Creating Moving Objects

● Sprites still behave as 3D objects, so lock Z
movement and X/Y rotation

● Use a Collider generated by the Sprite
Collection

● RigidBody.AddForce(vector,
ForceMode.VelocityChange)

Creating Platformer Movement

● Use CharacterController
○ isGrounded
○ Move method returns detailed collision info

(side/above/below) immediately
○ Haven't found anything (free) that replicates this

● CharacterController uses a capsule collider
○ Tweak at runtime to figure out the proper Step,

Height, Radius, and Skin Width
○ Remember that capsule collider curves along Z axis

● Must disable the Box Collider (set isTrigger,
possibly in your custom controller script)

Creating Platformer Movement

Script from:
https://www.youtube.com/watch?v=EW0phq6xo
Jk&list=PLA5781666685406E1

● Applies its own gravity rather than trying to
use physics (feels tighter and more
controlled than built-in physics)

● Can adapt this script to use input from an AI
logic script

https://www.youtube.com/watch?v=EW0phq6xoJk&list=PLA5781666685406E1
https://www.youtube.com/watch?v=EW0phq6xoJk&list=PLA5781666685406E1

"Is it a...?"

When interacting with other objects (i.e.,
triggers):

if (obj.GetComponent<MyType>() != null) {
// do something

}

● Components define object capabilities, even
if I don't interact with their methods or fields

● There are probably better ways to do this.

Layering / Extending Components

● Develop general components which are
used by more specific/variant components

● Example:
○ AIMotor knows about the Unity CharacterController
○ WanderAI, HopWanderAI, etc. read and write

exposed fields on AIMotor to determine state and
move the NPC

● Example:
○ PlatformerController knows how to move the

character around; doesn't care what it's attached to
○ PlatformerPlayerAnimation is attached to a

tk2dAnimatedSprite and inteprets exposed state
fields on PlatformerController to animate it

Destroyed Objects Become Null

● You can keep references to other objects in
your components, then test if they are
destroyed by checking whether they're null

● Example:
○ AISpawner has a maximum number of spawns, and

keeps a list of enemies it has spawned
○ When an enemy is killed, it is destroyed with

DestroyObject
○ When AISpawner fires, it goes through the list and

removes all NULL objects, then tests whether it is
under its spawn limit

● This isn't exactly how .NET normally works

Stuff I'm not familiar with...

Sliced Sprite

● Used to create "windows," etc.

Clipped Sprite

● Displays a clipped rectangle from a sprite

Tiled Sprite

● Creates an area filled in with a repeated
pattern

Tile Maps

● Beta
● Allows you to "paint" a map based on a

tileset
● Can import .tmx files

