Jakob Troidl, Johannes Knittel, Wanhua Li, Fangneng Zhan, Hanspeter Pfister*, Srinivas Turaga*
Global Neuron Shape Reasoning with
Point Affinity Transformers
Research Presentation
( *equal advising )
Dorkenwald et. al 2023 – Animation by Tyler Sloan
The Connectomics Pipeline
3
Brain Tissue
Segmentation
Alignment
Acquisition
Proofreading
Analysis
Proofreading Connectomes
Dorkenwald, S., Schneider-Mizell, C.M., Brittain, D., Halageri, A., Jordan, C., Kemnitz, N., Castro, M.A., Silversmith,
W., Maitin-Shephard, J., Troidl, J. et al. CAVE: Connectome Annotation Versioning Engine. Nature Methods 2024.
Neurons come in many shapes
Motifs are recurrent connectivity patterns of neurons in the brain.
MICrONS Consortium, Bae, J.A., Baptiste, M., Bishop, C.A., Bodor, A.L., Brittain, D., Buchanan, J., Bumbarger, D.J., Castro, M.A., Celii, B. and Cobos, E., 2021. Functional connectomics spanning multiple areas of mouse visual cortex.
Neurons come in many shapes
Motifs are recurrent connectivity patterns of neurons in the brain.
MICrONS Consortium, Bae, J.A., Baptiste, M., Bishop, C.A., Bodor, A.L., Brittain, D., Buchanan, J., Bumbarger, D.J., Castro, M.A., Celii, B. and Cobos, E., 2021. Functional connectomics spanning multiple areas of mouse visual cortex.
Manual / Human
Error Identification
Two neurons
incorrectly merged
Representing Morphology
Mesh
Skeleton
Point Cloud
Difficult to make automatic higher-level inferences about neuron morphologies
Model
Automated Error
Correction
Automated
Cell Typing
Learned Feature
Why Point Clouds ?
(+) Easy to sample; either subsampling segmentation or skeleton vertices
(+) Scalable 3D data representation that captures global morphology
(-) No explicit representation of topology
Imperfect CNN-based
volumetric segmentation
Multi-Neuron Point Cloud
Corrected Labels
Our
Approach
Sampling
But what about Split Errors ?
We assume strong super-voxel agglomeration biased towards merge errors
Image Credit: Dorkenwald, S., Schneider-Mizell, C.M., Brittain, D., Halageri, A., Jordan, C., Kemnitz, N., Castro, M.A., Silversmith, W., Maitin-Shephard, J., Troidl, J. and Pfister, H. et al., 2024. CAVE: Connectome annotation versioning engine. to appear in Nature Methods.
Our Approach
Point Affinity Transformer
(Multi-) Neuron
Point Cloud
Point Pair
Affinity Matrix
BCE (
Ground Truth
Affinity Matrix
,
)
Affinity guided Point Clustering
(Multi-) Neuron
Point Cloud
Point Distance Metric
Clustering Labels
D = 1.0 -
Agglomerative
Point Cloud Clustering
Affinity = Point Proximity Metric
Point Affinity Transformer
Qualitative Results
Quantitative Results
Neurons come in many shapes
16
Motifs are recurrent connectivity patterns of neurons in the brain.
Dorkenwald, S., Matsliah, A., Sterling, A.R., Schlegel, P., Yu, S.C., McKellar, C.E., Lin, A.,
Costa, M., Eichler, K., Yin, Y. and Silversmith, W., 2023. Neuronal wiring diagram of an adult brain.
LO20
GNGME1
IPSME2
LO1
Tedious Labeling Process
Neuron Type Classification
🔒
Input: Single Neuron Point Cloud
Pretrained Point Affinity Transformer Encoder
Neuron Types: Qualitative Results
Neuron Types: Confusion Matrices
PFNp_a
PFNp_b
PFNp_a
PFNp_b
Hemibrain
FlyWire OL
Caveats & Next Steps
(-) Trained & tested on simulated reconstruction errors
Next Steps
Test on real reconstruction errors (e.g., map initial FlyWire segmentation to post proofreading)
(-) So far only trained & tested on Drosophila connectomes
Establish automatic proofreading benchmark datasets
Combine our approach with additional data such as SegCLR, synapses or neuron types
Neuron morphology & connectivity aware motif discovery
References
Troidl, J., Knittel, J., Li, W., Zhan, F., Pfister, H. and Turaga, S.C., 2024. Global Neuron Shape Reasoning with Point Affinity Transformers. Under Submission at CVPR, 2024.
Dorkenwald, S., Schneider-Mizell, C.M., Brittain, D., Halageri, A., Jordan, C., Kemnitz, N., Castro, M.A., Silversmith, W., Maitin-Shephard, J., Troidl, J. and Pfister, H., 2023. CAVE: Connectome annotation versioning engine. To aopear in Nature Methods.
MICrONS Consortium, Bae, J.A., Baptiste, M., Bishop, C.A., Bodor, A.L., Brittain, D., Buchanan, J., Bumbarger, D.J., Castro, M.A., Celii, B. and Cobos, E. et al. , 2021. Functional connectomics spanning multiple areas of mouse visual cortex.
Shi, W. and Rajkumar, R., 2020. Point-GNN: Graph neural network for 3d object detection in a point cloud. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1711-1719).
Zhao, H., Jiang, L., Jia, J., Torr, P.H. and Koltun, V., 2021. Point transformer. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 16259-16268).
Dorkenwald, S., Matsliah, A., Sterling, A.R., Schlegel, P., Yu, S.C., McKellar, C.E., Lin, A., Costa, M., Eichler, K., Yin, Y. and Silversmith, W., 2024. Neuronal wiring diagram of an adult brain. Nature, 634(8032), pp.124-138.
Takemura, S.Y., Hayworth, K.J., Huang, G.B., Januszewski, M., Lu, Z., Marin, E.C., Preibisch, S., Xu, C.S., Bogovic, J., Champion, A.S. and Cheong, H.S., 2023. A connectome of the male drosophila ventral nerve cord. BioRxiv, pp.2023-06.
Scheffer, L.K., Xu, C.S., Januszewski, M., Lu, Z., Takemura, S.Y., Hayworth, K.J., Huang, G.B., Shinomiya, K., Maitlin-Shepard, J., Berg, S. and Clements, J., 2020. A connectome and analysis of the adult Drosophila central brain. elife, 9, p.e57443.
Dorkenwald, S., Li, P.H., Januszewski, M., Berger, D.R., Maitin-Shepard, J., Bodor, A.L., et al., 2023. Multi-layered maps of neuropil with segmentation-guided contrastive learning. Nature Methods, 20(12), pp.2011-2020.
jakobtroidl.github.io
Thank You!
Website: vcg.seas.harvard.edu/publications/neuron-shape-reasoning
Image Credit: Amy Sterling @ FlyWire
Code: github.com/jakobtroidl/neuron-shape-reasoning
23
24
25
26
27