
OSV

Dor Laor, Avi Kivity
Cloudius Systems

OSV

Glauber Costa
KVM, Containers, Xen

Nadav Har’EL,
Nested KVM

Pekka Enberg,
kvm, jvm, slab

Dor Laor, Former kvm
project mngr

Avi Kivity KVM
originator

 Or Cohen Dmitry Fleytman Ronen Narkis Guy Zana hch

In the beginning there was hardware
… and then they added

an application
… and then they added

an operating system
… and then they added

 a hypervisor
… and then they added

 managed runtime
Notice the pattern?

The story so far

Typical Cloud Stack

Hardware

Hypervisor

Operating System

JVM

Application Server

Your App

Our software stack
Congealed into existence.

A Historical Anomaly

Hardware

Hypervisor

Operating System

JVM

Application Server

Your App

provides protection and abstraction

provides protection and abstraction

provides protection and abstraction

Too Many Layers, Too Little Value

Property/Component

Hardware abstraction

Isolation

Resource virtualization

Backward compatibility

Security

Memory management

I/O stack

Configuration

VMM OS runtime

Duplic
atio

n

Transformed the
enterprise from
physical2virtual

Virtualization

Virtualization 1.0 Virtualization 2.0

Compute node

virtual server

Virtualization 2.0, Massive Scale

Scalability

Virtualization 2.0, Dev/Ops

Virtualization 2.0, agility!

Rolling upgrade
within seconds and
a fall back option

Virtualization 2.0

vServer OS 1.0Architecture

● No Hardware
● No Users
● No app(S)

● Yes Complexity

Be the best OS
powering virtual machines

in the cloud

Mission statement

Hardware

Hypervisor

OSv

Your App

Hardware

Hypervisor

OSv + Jazz JVM

Your App

Hardware

Hypervisor

OSv + Jazz JVM

Hardware

Hypervisor

OSv

Hardware

Hypervisor

OSv + Jazz JVM

Your App

The new Cloud Stack - OSv

Hardware

Hypervisor

Core

JVM

Application
Server

Your AppSingle
Process

Kernel
space only

Linked to
existing
JVMs

App sees
no change

The new Cloud Stack - OSv

Memory Huge pages, Heap vs Sys

I/O Zero copy, full aio, batching

Scheduling Lock free, low latency

Tuning Out of the box, auto

CPU Low cost ctx, Direct
signals,..

Van Jacobson == TCP/IP

Common kernel network stack

Leads to servo-loop:

Van Jacobson == TCP/IP

Net Channel design:

Van Jacobson == TCP/IP

Dynamic heap, sharing is good

JVM Memory System
memory

Lend
memory

Milestones

Formation,
12/2012

Seed, 02/2013

KVM,
networking,
04/2013

Outperform
Other OSs,
07/2013

OSS launch,
09/2013

limited GA,
Beginning
2014

First OEM
revenue,
Q1/2015

OSS launch,
Memcached
outperform by 40%,
9/2013

● Runs:
○ Java, C, JRuby, Scala, Groovy, Clojure, JavaScript

● Outperforms Linux:
○ SpecJVM, MemCacheD, Cassandra, TCP/IP

● 400% better w/ scheduler micro-benchmark
● < 1sec boot time
● ZFS filesystem
● Huge pages from the very beginning

Status

● These days, credibility == open source
● Looking for cooperation:

○ Kernel-level developers
○ Management stack
○ Dev/ops workflow

● BSD-style license

Open Source

● 64-bit x86
○ KVM - running like a bat out of hell
○ Xen HVM - running (still slow :-()
○ Xen PV - in progress
○ VMware - planned in 2 months

● 64-bit ARM - planned
● Others - patches welcome

Architecture ports

Integrating the JVM into the kernel

Core

JVM

Application
Server

Your AppDynamic
Heap
Memory

TCP in the
JVM + App
context Fast inter

thread
wakeup

Integrating the JVM into the kernel

● C++
● Idle time polling
● Performance and tracing
● Virtio-app

Technical deep dive

C++

● Going idle is much more expensive on
virtual machines

● So are inter-processor interrupts - IPIs
● Combine the two:

○ Before going idle, announce it via shared memory
○ Delay going idle
○ In the meanwhile, poll for wakeup requests from

other processors
● Result: wakeups are faster, both for the

processor waking, and for the wakee

Idle-time polling

Performance and tracing

Virtio-app || Data plane

● For specialized applications, bypass the I/O
stack completely

● Application consumes data from virtio rings

User

Kernel

OSv at the cutting edge front

Hardware

Driver

Hypervisor

Host network

Socket

Application

Hardware

Hypervisor

Socket
Application

Driver

Socket
Application

Traditional

OS-V

● Transactional Memory (lock elision)
Better architecture match with
higher transaction/sec and less contention

● Perfect match with NVRam abundance
In the near future we'll see NVRam reaches
mainstream adoption. The importance of traditional
filesystems will decrease, applications will manage their
IO directly using NVRam

OSv at the cutting edge front

OS that doesn’t get in the way

4 VMs per sys
admin ratio

http://www.computerworld.com.au/article/352635/there_best_practice_server_system_administrator_ratio_/

NO Tuning
NO State
NO Patching

http://www.computerworld.com.au/article/352635/there_best_practice_server_system_administrator_ratio_/

Management

Virtualization 2.0: Stateless servers

Let’s Build A COMMUNITY

Porting a JVM application to OSV

1. Done*

* well, unless the application fork()s

Porting a C application to OSV

1. Must be a single-process application
2. May not fork() or exec()
3. Need to rebuild as a shared object (.so)
4. Other API limitations apply

Resources

http://osv.io

https://github.com/cloudius-systems/osv

@CloudiusSystems

 osv-dev@googlegroups.com

http://osv.io
https://github.com/cloudius-systems/osv

OSv@Cloudius

Cloudius Systems, OS Comparison
Feature/Property

Good for:

Typical workload

kernel vs app

API, compatibility

Config files

Tuning

Upgrade/state

OSv

Machete:
Cloud/Virtualization
Single app * VMs

Cooperation

JVM, POSIX

0

Auto

Stateless, just boots

JVM support

Lines of code

License

Tailored GC/STW
solution

Few

BSD

Traditional OS
Swiss knife: anything

goes
Multiple apps/users,

utilities, anything

distrust

Any, but
versions/releases..

1000

Manual, requires
certifications

Complex, needs
snapshots, hope..

Yet another app

Gazillion

GPL / proprietary

